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ABSTRACT 
 

 Changes in gene copy number are among the most frequent mutational events in all 

genomes and were among the mutations for which a physical basis was first known.  Yet 

mechanisms of gene duplication remain uncertain, because formation rates are difficult to 

measure and mechanisms may vary with position in a genome.  Duplications are compared 

here to deletions, which seem formally similar, but can arise at very different rates by distinct 

mechanisms.  Methods of assessing duplication rates and dependencies are described with 

several proposed formation mechanism.  Emphasis is placed on duplications formed in 

extensively studied experimental situations.  Duplications studied in microbes are compared 

to those observed in metazoan cells.  Duplications and especially their derived 

amplifications are suggested to form by multi-step processes often under positive selection 

for increased copy number. 
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I    Introduction 

Gene duplications are among the oldest (Tice 1914; Morgan 1925; Bridges 1936) and 

perhaps the most frequent of mutation types (Anderson and Roth 1977; Reams and Neidle 

2004; Lynch et al. 2008; Lipinski et al. 2011).  Here we discuss duplications that form in real 

time as opposed interspersed segmental duplications with ancient origins (Girirajan et al. 

2011).  We emphasize genetic approaches to understanding their formation and compare 

results in microbes to those in metazoan cells. 

Figure 1A describes the formal process of forming a tandem duplication (or deletion) by a 

genetic exchange between separated sites in two sister chromosomes or homologs.  When 

sites “a” and “b” are extensive direct order sequence repeats (>100bp), duplications can form 

by homologous recombination (Green 1963), described by Haber in Chapter 1.1.  In some 

situations, duplications appear to form by single strand annealing (Reams et al. 2014) which is 

described by Morrical in Chapter 1.3.  Most points in the bacterial chromosome are not 

flanked by extensive repeats and give rise to duplications whose junctions have short 

sequence repeats (4-12 base pairs) that are presumed to arise by some kind of single strand 

annealing, template switching or non-homologous end joining.  Several complex models 

suggest how the short (or absent) repeated sequences at a duplication junction can be 

generated by a multistep process (Hastings et al. 2009b; Kugelberg et al. 2010; Brewer et al. 

2011; Elliott et al. 2013).  In the absence of extensive repeats, duplications may form by 

aberrant recombination activities of topoisomerases (Shyamala et al. 1990). 

The junction sequence (“b/a” in Fig.1A) is a key duplication feature that can shed light on 

the nature of the underlying formation event, but can also be misleading if an initial duplication 

has been remodeled, possibly under selection.  As seen in Fig 1A, a finished duplication can 

be remodeled by deletions that remove the initial junction element and reduce the size of the 

repeated region.  Such remodeling may be selectively favored if it reduces the fitness cost of 

the initial duplication while retaining the benefit provided by more copies of some included 

gene(s).  A remodeling deletion creates a new join point that does not reflect the event that 

formed the initial duplication.  Further amplification or loss of a duplication occurs by 

exchanges between the two extensive identical copies of the duplicated region (Fig. 1B). 

These events are frequent and depend heavily on homologous recombination. 
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Figure 1  Duplication by exchanges between sister chromosomes.  In Part A, “a” and “b” are sequence elements 
where exchanges that can be mediated by recombination, annealing or transposition.  Hybrid elements (b/a or 
a/b) are at the rearrangement junctions.  Duplications are subject to remodeling that removes the junction.  Part 
B describes homologous recombination events that change copy number.  These recombination events can 
increase or decrease copy number and make duplications prone to loss. 

 

Duplications can also form by mechanisms that do not involve an exchange between 

chromosomes, but rather depend on events occurring within a single chromosome.  Several of 

these mechanisms rely on palindromic sequences and produce tandem inverse-order 

duplications (TIDs) with adjacent copies in inverse orientation.  For all types of duplications, 

the nature of join points between copies can be informative, but can also reflect subsequent 

remodeling events rather than the initial exchange. These duplications, their formation and 

remodeling will be discussed later in this chapter (see page 20) 
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II General problems of assessing duplication rates and dependencies 

 
Detecting duplications   

In genetic approaches to duplication mechanisms, one measures the rate of duplication 

formation and observes how that rate is affected by mutations that eliminate various candidate 

functions.  This requires observing changes in duplication frequency over time. The frequency 

of duplication-bearing cells in a population has been measured in several ways. 

 Selection for cells with increased copy number   This assay is probably the simplest but 

also the most problematic way to measure duplication.  Because it involves selection, this 

assay may be the more biologically relevant.  A population is placed under selective 

conditions that allow faster growth of cells with additional copies of some particular gene.  

This assay often suggests that duplication formation is heavily dependent on homologous 

recombination with 10 to 1000-fold fewer duplications in a RecA mutant strain (Petes and Hill 

1988; Romero and Palacios 1997).  This conclusion may be misleading if detection favors 

cells with more than two copies of the gene in question. The secondary amplification (and 

deamplification) events shown In Fig1B are generally heavily dependent on RecA, since they 

occur by exchanges between extensive perfect homologies.  Thus if selection favors cells with 

an amplification, appearance of mutants may show heavy RecA-dependence, even when 

formation of the initial duplication is independent of homologous recombination.  Similarly, 

stringent selections that demand many gene copies (e.g. 20 copies) and do not allow slow 

growth and improvement of cells with a few copies (<10) may under-report the frequency of 

amplification.  

Trapping duplications   This assay detects duplication-bearing cells by their 

heterozygosity for two mutually exclusive, selectable genetic markers.  It does not favor cells 

with higher amplification.  For example, Figure 2 describes a strain with a tetracycline 

resistance (TetR) determinant whose expression is eliminated by insertion of a kanamycin 

resistance (KanR) cassette.  Into this TetS KanR strain, one can selectively introduce (by 

transduction or transformation) a fragment that restores TetR and removes the KanR insertion.  

Haploid cells that become TetR lose their pre-existing KanR resistance.  However, any 

recipient cell with a pre-existing duplication of the TetS KanR region can acquire a TetR 

determinant in one copy and retain KanR in the other.  Since the two selected markers occupy 

the same chromosomal site, they cannot both be retained without two copies of the region.  



	
   6	
  
Selection for resistance to both antibiotics thus “traps” a pre-existing duplication and allows it 

to be selectively maintained.  Trapping requires two copies of the region in question and does 

not favor recovery of cells with higher amplification.  Duplication frequency is defined as the 

fraction of the TetR transformants that retain the original KanR phenotype.  This method 

eliminates the contribution of selective amplification to detectability of duplications. 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 2  Isolating duplications by trapping.   This assay identifies and selectively maintains a pre-existing 
duplication that formed under non-selective conditions.  Frequency is defined as the fraction of recombinants that 
maintain two normally mutually exclusive markers.   In this diagram a KanR recipient receives TetR by a genetic 
cross.   The duplication frequency in the recipient strain is the ratio of TetR KanR duplication transfomants to 
parental haploid TetR, KanS types.  No amplification beyond duplication is selected.  Using “recombineering” 
methods (Sawitzke et al. 2007), the cross that detects the duplication can be performed in recombination-
deficient strains.   

 

Trapping was first done by transduction crosses between two closely-linked, 

complementary deletions within the his operon of Salmonella (Anderson et al. 1976). Most 

His+ recombinants from these crosses carry a duplication with one deletion allele in each copy.  

Because recombination between deletions is rare and pre-existing duplications are common, 

a His+ phenotype is most often generated by acquiring the donor allele in one copy of a large 

pre-existing duplication.  The donor deletion allele  replaces one copy of the recipient allele, 

generating a heterozygote whose His+  phenotype reflects complementation between 

deletions.  In a later experiment, a wild type his+ strain was crossed with a his::Tn10 (His- 

TetR) auxotroph and duplication frequency in the recipient was indicated by the fraction of 

transductants that retained both alleles His+,TetR, all such recombinations carried a 
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duplication.  Because these assays involve a transductional cross, they could detect 

duplications only in recombination-proficient cells and could not initially be used to test effects 

of recombination deficiencies on duplication formation.  However, with the advent of 

recombineering (Court et al. 2002), the second marker could be introduced without RecA and 

the frequency of trapped duplications could be measured in recombination-deficient strains.  

The frequency of duplication-bearing cells (measured by trapping) was used to estimate initial 

rates of duplication formation by determining the frequency attained by a population initiated 

by a single cell lacking a duplication and grown for fixed small number of cell generations 

(Reams et al. 2010; Reams et al. 2014).  

The trapping assays detect cells with two copies of the target site and place no 

restriction on the size of the amplified region (distance between “a” and ”b” in Fig.1), as long 

as that region includes the target.  There is no bias toward higher amplification since a single 

copy of each alternate allele provides full ability to grow under selection.  In determining 

dependency of duplication rates on various recombination functions, the trapping assays have 

the advantage of being unaffected by growth rate or viability of the tested recombination 

mutant.  That is, the slower growth and reduced viability of a recA mutant is not expected to 

reduce the measured duplication rate, which is based on the relative frequency of cells with 

and without a duplication.  Both populations are subject to the same general growth and 

viability effects, even though the duplication rate may be strongly affected. 

Identifying duplications having a particular hybrid junction sequence   In these assays, 

the duplication’s hybrid join point (“b/a” in Figure 1) provides a novel selectable or scorable 

phenotype.  The two separated sequences (“a” and “b”) are allowed to recombine during non-

selective pre-growth. Cells that acquire a new phenotype by virtue of their join point sequence 

juxtaposition can be detected selectively or visually.  One example below assesses the 

reciprocality of recombination during duplication formation by non-selectively scoring cells with 

an exchange between separated long lac repeats in the Salmonella chromosome that arise in 

a single clone (see below “Assessing reciprocal recombination in a duplication/deletion 

system”).  In another system (Anderson and Roth 1978) selection is used to detect the 

phenotype generated at the new duplication junction (see below “Duplication formation using 

particular short recombining sequences”). 
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Determining duplication rates 

In measuring any mutation rate, it is standard to determine the increase in mutant 

frequency during a period of non-selective growth.  In the case of duplications, this method is 

complicated by the duplication’s associated fitness cost and frequent loss by recombination.  

That is, the rate of duplication formation may be underestimated because new duplication 

mutants are frequently lost by reversion.  In addition, duplications and amplifications have 

inherent fitness costs that cause them to grow more slowly than the parent strain in which 

they arose, even under non-selective conditions (Reams et al. 2010).  In measuring rates, one 

can correct for these effects, but only after independently measuring the loss rate and fitness 

cost.  Applying these corrections is still complicated because duplications of a single site may 

vary widely in size and fitness cost (Reams et al. 2010). 

A related problem is the speed at which duplication frequency comes to a steady state 

level (Reams et al. 2010).  Point mutant frequencies increase linearly during non-selective 

growth and are subject to Luria-Delbrück fluctuation between populations.  In contrast, the 

frequency of cells with a duplications comes rapidly to a steady state level dictated by the 

balance between the high formation rate, on one hand, and the loss rate and fitness cost, on 

the other.  This steady state obscures Luria-Delbrück fluctuations, which are often used to 

measure mutation rates (Rosche and Foster 2006).  That is, duplications are immune to Luria-

Delbrück fluctuations since their steady state frequency is the same in all populations, 

regardless of whether the first duplication forms early or late in the culture.  
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Figure 3  Steady-state duplication frequencies     When a culture is started by a few cells 
with no duplication and is grown with no applied selection beyond viability, duplication 
frequency increases to a steady-state.  This steady state is dictated in part by the relative 
rates of formation and loss (kF and kL).   Loss rate is usually higher than formation rate.   The 
second factor is fitness cost of the duplication which is dictated by difference between the 
higher growth rate of the parent strain (µH) the lower growth rate of the haploid strain with the 
duplication(µD).  The equation above approximates the steady state frequency (Reams et al. 
2010).  In the equation, D and H denote the titer of duplication-bearing and haploid parent 
cells respectively. 
 

Duplication formation rate can be assessed early in a culture (initial rate) before steady 

state is reached.  Alternatively, it can be inferred mathematically from the steady-state level 

using the equation in Figure 3 if fitness cost and loss rates are known.  Most points in the 

Salmonella chromosome show a duplication formation rate of about 10-5/cell/generation and a 

steady state frequency of about 10-3 (Anderson and Roth 1981).  Typically, a bacterial culture 

initiated by a single cell lacking a duplication rises from 0 to within 70% of the steady state 

level in about 30 generations – the growth required for a single cell to generate a saturated 

overnight liquid culture (Reams et al. 2010).  Using this method, a duplication hot spot (argH), 

flanked by 5 kb ribosomal RNA loci, rrnA and rrnE  (100kb apart), was found to duplicate at 

the surprisingly high rate of 10-3/cell/generation (Reams et al. 2014).  A cold spot (pyrD) 

flanked by no extensive repeats duplicated at the 1,000-fold lower rate of 10-6/cell/generation.  

 

 Comparing rates of duplication and deletion formation  As seen in Figure 1, duplication 

and deletion events appear formally similar and might be expected to occur at the same rate 

or be formed simultaneously by a reciprocal exchange.  These rates are difficult to compare 
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for several reasons.  Deletions are limited to regions devoid of essential genes, while 

duplications show essentially no size limit.  Regions between  directly-oriented 5kb rrn loci 

duplicate at very high frequencies (10-3/cell/division), while the corresponding deletions are all 

lethal.  Rates of duplication and deletion can be compared immediately when direct repeats 

are placed flanking non-essential genes (described below, M. Carter, unpublished).  

An additional problem complicates assessing the contribution of single strand 

annealing to deletion and duplication formation.  Deletions can be generated by a double 

strand break in one chromosome, when broken ends are resected and single strand 

overhangs are allowed to anneal.  In contrast, formation of a duplication by annealing requires 

two simultaneous breaks, on opposite sides of the duplicated region in different sister 

chromosomes.  These two simultaneous breaks are unlikely unless the recombining 

sequences are subject to frequent breakage or if damages are allowed to accumulate (Reams 

et al. 2014).  Behavior of several particular systems is described below. 

 

III Duplications between long repeats 

As outlined above, extended native direct sequence repeats can serve as the “a” and 

“b” elements in Figure 1 and initiate tandem duplications or deletions.  Duplications between 

such repeats have often been detected by selection for cells with an increased copy number 

of an included gene.  When measured in these assays duplication shows a substation (>10-

fold) dependence on homologous recombination (RecA) (Petes and Hill 1988; Romero and 

Palacios 1997).  However, as described below, some long repeats have been observed to 

produce duplications without participation of homologous recombination, suggesting formation 

by single strand annealing (Reams et al. 2014).  The RecA-dependence seen in direct 

selection assays may reflect improved detection due to later recombination-dependent 

amplification events, rather than the initial duplication exchange.  To determine the role of 

recombination and avoid problems of higher amplification, several alternative assays were 

used to measure duplications formed between long repeats. 

 

Assessing reciprocal recombination in a duplication/deletion system  In this assay, 

direct 3 kb repeats of the E. coli lac region are inserted 40 kb apart in the Salmonella 

chromosome (M. Carter, A. B. Reams, unpublished).  This system assays the formation of 

both duplications and deletions between these repeats and estimates the frequency of 
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reciprocal exchanges (See Figure 4).  The lac duplications are detected by the phenotype 

of an expressed recombinant lacZ+ gene at the joint point.  Since recombinants are scored 

visually and a single junction sequence is sufficient for non-selective visual detection of a 

duplication, this assay does not favor cells with higher amplification.  In this assay, deletions 

are similarly detected visually by non-selected loss of an intervening marker. 

In the assay strain (Figure 4), the intact lacZ allele at the right is unexpressed due to 

lack of a promoter and the lacZ allele on the left lacks the distal end of its coding sequence.  

Recombination between these defective lacZ alleles can generate a duplication with an 

expressed lacZ+ gene at the junction plus two copies of the central phoA+ gene.  The 

reciprocal product is a deletion that lacks phoA and carries an untranscribed lacZ deletion 

allele at the deletion join point.  The recombining sequences are 3 kb in length separated by 

40 kb and have no added propensity to suffer nicks or breaks.  The events are scored visually 

on non-selective medium. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4   Visual detection of chromosomal duplication  The parent strain (top line) has separated inactive 
lac operons (3 kb repeats) and a central active phoA gene.  The parent forms a light blue colony on rich medium 
containing chromogenic substrates Red-Gal and Blue-Pho.  An unequal exchange can generate either a 
duplication (center line; purple sector) or deletion (bottom line; white sector).  A reciprocal exchange forms twin 
sectors (bottom photograph), 
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Colonies of the tester strain grow on non-selective medium that includes indicators 

for both lac (Red-Gal) and phoA (Blue-Pho), where they form light blue colonies (phoA+ IacZ-).  

As these colonies form, an early duplication recombinant produces a purple sector (blue from 

two doses of phoA+ plus red from lacZ ).  A deletion recombinant forms a white sector (phoA- 

lac-).  Reciprocal exchanges generate twin sectors – one purple and one white -- above a light 

blue background (See Fig 3).  In this assay, duplications and deletions form at similar rates, 

estimated at about 5 x 10-4/cell/generation respectively.  About 20% of duplication sectors are 

accompanied by a twin deletion sector, suggesting occasional reciprocality.  In a recA mutant 

strain, deletion and duplication rates both dropped 10 and >20-fold respectively suggesting 

that homologous recombination is responsible for most exchanges.  Unexpectedly, single 

recB and recF mutations had little effect on either duplication or duplication rates.  This 

behavior resembles earlier assays of duplication loss (Galitski and Roth 1997), but contrasts 

with the Rec-independent duplication of regions between rrn loci, which involve repeats with a 

similar size and separation (described below). 

 

Duplications between tandem copies of the ribosomal RNA (rrn) genes  This assay 

resembles that described above, but assesses exchanges between native 5 kb ribosomal 

RNA loci (rrnB and rrnE) separated by about 40 kb (Reams et al. 2014).  Duplications of the 

rrnB-rrnE region were detected by the Kan Tet trapping assay described above (Figure 2) and 

arose at a rate of about 10-3/cell/generation.  Deletions of the intervening region are lethal and 

could not be recovered. 

Surprisingly the duplication rate of the rrnBE interval was essentially unaffected by 

recA, recB, recF or recB-F double mutations, but dropped 30-fold in a ruvC-recG double 

mutant.  This behavior was surprising in that recA, B or F mutations impair homologous 

recombination pathways that operate in bacterial crosses (Kuzminov 2001; Spies and 

Kowalczykowski 2005).  It was proposed that loss of homologous recombination was masked 

because these mutations activate an alternative single-strand pathway that can form 

duplications between rrn sequences by single strand annealing.  In the presence of recA, recB, 

or recF mutations unrepaired gaps and breaks could accumulate.  A sufficient accumulation 

would allow single-stranded ends from different rrn loci in different sister chromosomes to 

coexist and anneal, thus opening an alternative route to duplication formation.  Achieving 

coincident single strand ends would be facilitated by frequent damage to rrn sequences.  The 
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rrn loci are highly transcribed and their G/C skewed sequences include many quasi-

palindromes.  These properties may combine to allow the non-transcribed strand to form 

secondary structures and be subject to consequent damage. 

In recG ruvC double mutants, duplication rates dropped, suggesting impairment of both 

homologous recombination and single-strand annealing.  These mutations, particularly in 

combination, inhibit homologous recombination by preventing resolution of Holliday structures 

(Spies and Kowalczykowski 2005) but they do not prevent RecF and RecBC pathways from 

initiating repair of gaps and breaks.  It was suggested that in recG-ruvC mutants, the single-

strand ends needed for annealing are still processed, but lead to accumulation of unresolved 

structures without any accumulation of free ends.  Thus ultimately blocking both pathways of 

duplication formation.   Consistent with this idea, the duplication defect seen in recG ruvC  

mutants is corrected by addition of single recA, recB or recF mutations.  Each of these single 

mutations blocks an upstream step in homologous recombination and is expected to 

accumulate one or more sources of single-strand ends.  Ability of these single mutations to 

correct the recG, ruvC duplication defect is thus explained if they leave ends available for the 

alternative annealing pathway (Reams et al. 2014).  

Both the lac and rrn assays involve exchanges between substantial repeats (3 and 5 

kb) separated by 100 and 40 kb, respectively, but the two assays showed very different 

dependencies on recombination.  The RecA dependence of the lac assay suggests that less 

frequent or less persistent breaks initiate exchanges between different sisters that involve a 

single broken end in one chromosome, invading the other lac duplex (using RecA).  Damage 

to both recombining sequences is rare.  The Holliday structures generated by this invasion 

may lead to the occasional reciprocal exchanges seen in that assay.  Reciprocality could not 

be tested for rrn flanked intervals due to lethality of the deletions. 

Reciprocality was tested for recombination between tandem 9 kb repeats of the rrn 

genes of yeast (Gangloff et al. 1996).  About 100 such genes exist in tandem in the yeast 

chromosome (Linskens and Huberman 1988).  As was seen for the lac system in the bacterial 

chromosome, reciprocality in yeast was seen in only about 20% of exchanges between yeast 

rrn loci.  This result was interpreted as evidence that the copy number change occurs by gene 

conversion-like events in which the two ends at a single break is repaired by invading an 

unbroken homolog at distant sites in the rrn array to increase the copy number in the broken 

chromosome.  However these events do not seem to require standard homologous 
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recombination enzymes as expected for such exchanges (Houseley and Tollervey 2011).  

This may suggest that recombination defects and frequent damage to rrn sequences may 

activate alternative annealing pathways in yeast, as described above for bacteria (Reams et al. 

2014).  Such annealing events could often be non-reciprocal half-exchanges between sister 

chromosome in which only one product is recovered (Yamamoto et al. 1992). 

 Evidence for reciprocal deletion/duplication events on a small plasmid  In two plasmid 

systems, a duplication is constructed within a gene (tet) whose restored function can be 

selected (Dianov et al. 1991; Mazin et al. 1991; Lovett et al. 1993; Kuzminov 1995; Bzymek 

and Lovett 2001).  Selection is made for loss of the duplication and restoration of the Tet-

resistance phenotype.  This loss can occur without homologous recombination (RecA) when 

repeats of 21 or 42pb are used, presumably by single strand annealing and strand slippage 

(essentially by deletion).  When larger repeats were used (165 or 401bp) deletions decreased 

8- to 10-fold in a recA strain.  The deletion rate can be greatly enhanced by placing a 107bp 

perfect palindrome between the repeats (Bzymek and Lovett 2001).  Interestingly, placing 

either a perfect or imperfect palindrome between the recombining repeats caused a greater 

increase in deletions rates when RecA was absent.  This system has been extremely 

revealing about the process of deletion formation and DNA repair events occurring near the 

replication fork, but the connection to duplication is less clear.    

 

 

 

 

 

 

 

 

 

 

 
Figure 5   Deletion and duplication formation in a plasmid    The tetracycline resistance determinant (Tet) is 
disrupted by an internal duplication formed between nascent sister chromosomes.  Selection for TetR demands 
loss of the duplication by a deletion event. Drug-resistant deletion mutants carry a plasmid dimer.  While this is 
consistent with a reciprocal recombination, a half-exchange would produce a linear dimer, whose TetR phenotype 
could only be maintained if the plasmid recircularized by a second exchange.  
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 In this assay, the selected deletion is recovered in a circular plasmid dimer that carries 

the selected (tet+) gene in one plasmid unit and two or three copies of the TetR gene in the 

second plasmid unit.  This outcome has been interpreted as evidence for duplication by a 

single reciprocal exchange between nascent sister-chromosomes.   

However the same endpoint can be reached if the deletion arises by a non-reciprocal half-

exchange.  (See Figure 5.)  Such an exchange would produce a linear plasmid dimer with 

terminally redundant ends, which would not survive without closure.  Genetic transmission 

(detection) of the functional tetA+ gene formed by deletion requires plasmid circularization -- 

rejoining of the dimer ends.  Reciprocality of the initial event in this assay is difficult to 

distinguish from required secondary recircularization involving one or even multiple plasmid 

copies.  The reciprocality seen in the bacterial lac system above seems interpretable because 

the bacterial chromosomal dimer resolution mechanism permits recovery of a duplication or 

deletion recombinant in a single chromosome, regardless of whether it forms by a reciprocal 

or by a half-reciprocal exchange leaving a chromosome break. 

 

 Duplications formed by transposable elements  Transposable elements can contribute 

to duplications both by the act of transposition and by serving as portable regions of homology 

that support homologous recombination or annealing.  The first example of a tandem 

duplication, Bar eye, (Bridges 1936; Muller 1936) was much later shown to arise by an 

exchange between two pre-existing transposable elements, one on either side of the 

duplicated region (Tsubota et al. 1989).  The final duplication has a copy of the element at its 

join point but not at the outside end of either copy, suggesting that the parental strain (now 

lost) was heterozygous for two insertions flanking the region to be duplicated (Green 1985).  

Recombination between one element to the right of the region (in one parent) and a second 

element on the left side of the region (in the other parent) led to a duplication with a 

transposable element only at the junction (Tsubota et al. 1989).  The phenotype of the Bar 

mutation is due to the junction region structure, not to an increase in gene copy number. 

 Similar duplications arise in bacteria by exchanges between repeated copies of  

insertion sequences (Peterson and Rownd 1985; Haack and Roth 1995).  In the strains used 

for the Cairns selection (described below), duplications arise frequently (3 x 10-4/cell/division) 

by homologous recombination between IS3 repeats that flank the lac operon on plasmid F’128 
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lac (Reams et al. 2012).  In a recA mutant, the duplication rate is reduced only 100-fold and 

residual duplication ability depends heavily on IS3 transposase.  Transposition is not involved, 

since no novel DNA junction sequences are generated adjacent to IS3.  The RecA 

independence suggests that these duplications arise by single-strand annealing, as was seen 

for rrn duplications described above. Transposase may contribute by nicking the IS3 element 

and allowing simultaneous nicks at different IS3 elements to accumulate and provide the 

simultaneous single strand ends needed for duplication by annealing.    

 Duplications can also form by acts of replicative transposition.  An element close to one 

side of the gene being duplicated transposes replicatively into a target site on the opposite 

side of the duplicated region in a sister chromosome.  This transposition generates, in one 

step, a duplication strain with one copy of the element at the junction and a parental copy on 

one end of the duplicated region.  Multiple such duplications were detected as amplifications 

among unstable Lac+ revertants in the Cairns system described below (Kugelberg et al. 2006).   

 Very similar observations in Acinetobacter have been explained in a different way 

based on the transposition mechanism of the element involved.  In the Acinetobacter system 

described above, growth on benzoate is allowed by co-amplification of the closely-linked cat 

operons (Reams and Neidle 2003).  Normally, a cat duplication occurs by RecA-independent 

non-homologous end joining (NHEJ) or short homology-mediated annealing (Reams and 

Neidle 2003).  These joint points (SJ) have very short junction repeats.  However, when a 

copy of the transposable element IS1236 is placed close to  one side of the cat operons, the 

majority of cat duplications carry a copy of IS1236 at their junction in addition to the original 

IS1236 insertion (Cuff et al. 2012).  These duplications do not form by recombination following 

a simple transposition, since no cells within the colony have a simple insertion at the 

downstream site predicted by the new duplication junction sequence.  This behavior 

resembles duplication by replicative transposition described above.  However, the IS1236 

element is thought to transpose by excising a copy and adding an excised linear fragment to a 

distant target site – a mechanism that seems unlikely to generate a duplication join point 

(Duval-Valentin et al. 2004).  It has been suggested that transposase introduces a nick at the 

distal end of the parent IS1236 element (farthest from cat) and this end initiates DNA 

replication on the sister chromosome at a site across from the cat operons.  The proposed 

process resembles the template switching models described below (See MMBIR and TID).  
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 IV Tandem duplications between short or non-existent repeats 

  

Some duplication appear to arise by exchanges between very short pre-existing 

sequence repeats (order of 10 base pairs) in the parent chromosome and have one copy of 

this sequence at their duplication join point (SJ or short-junction duplications).  Other 

duplications show no junction repeats.  These duplications pose difficult mechanistic problems, 

but are likely to be important ones to understand since most duplications are of this type.  

Most regions of the genome lack extensive nearby direct repeats and must duplication in 

some other way.  As expected, duplications if such regions have small or non-existent repeats 

and form independent of homologous recombination.  The models described below propose 

various ways to solve these problems and are not mutually exclusive.   

 Short-junction duplications of a particular gene (e.g. pyrD) arise at a rate of 10-

6/cell/division in the Salmonella chromosome.  This is three orders of magnitude lower than 

that for regions between rrn sequence repeats, presumably due to a paucity of available 

flanking direct repeats.  The pyrD duplication rate is however much higher than that of 

deletions, presumably because of a larger number of small site pairs that can be used for 

duplication (“a” and “b” in Figure 1) without causing lethality.  That is, even though any single 

pair of short sequences is used at a very low rate (about 10-9/cell/division based on assays 

described below), the number of available sequence pairs is large.  Duplication size and 

therefore frequency is less restricted by lethality than that of deletions.  Several systems that 

detect duplication events between short sequences are described below with models 

proposed to explain them.  

 

 Selected amplifications with very short junction sequences in Acinetobacter  Two 

closely linked operons (cat) are needed for growth on benzoate and require a single positive 

regulatory protein for their expression (Reams and Neidle 2003).  Strains lacking this 

regulatory protein can grow on benzoate only when both cat operons are amplified.  When 

1010 mutant cells are plated on benzoate, about 100 colonies accumulate over four weeks.  

Each colony is comprised of cells with an amplification (3-40 copies) of a region that includes 

both operons (Reams, 2004).  These amplifications are generated by a multi-step process.  

During growth prior to plating on selective medium, a RecA-independent exchange occurs 

between short repeats (0-6 base pairs) (Figure 1A).  On selective benzoate medium, these 
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duplication-bearing cells grow slowly and improve their growth by cat amplification.  This is 

the RecA-dependent extension of the process diagrammed in Figure 1B.  The RecA-

dependence of revertant colony yield reflects only the secondary selected amplification (A. B. 

Reams, unpublished).  The major puzzle of duplication formation between short repeats is 

how ends interact. 

 

 Amplifications selected in E. coli and Salmonella during long-term growth on lactose   A 

system similar to the Acinetobacter system described above was designed by John Cairns to 

study the origin of mutations under selection (Cairns and Foster 1991).  In this system, cells 

carrying a leaky lac frameshift mutation (2% residual function) on an F’ plasmid are pre-grown 

on glycerol and then plated on minimal lactose medium, where they cannot grow.  Over a 

week, two types of revertant colonies accumulate.  One colony type (10% of total) is similar to 

the amplification-carrying revertants described above for benzoate use in Acinetobacter.  

These colonies are composed of cells that carry a lac amplification with 10 – 100 tandem 

copies of the leaky mutant lac allele (Kugelberg et al. 2006).  The initial duplication arises 

before plating and later amplifies under selection for faster growth on lactose.  Growth is 

enhanced by increased copy number of the mutant lac allele with no change in the lac 

sequence.  When these Lac+ revertants are shifted to non-selective medium, the amplification 

and the Lac+ phenotype are no longer under selection and are progressively lost.  Formation 

(and loss) of this unstable Lac+ phenotype depends on RecA, as expected for amplification (or 

loss) of a pre-existing duplication.  The duplications underlying these amplifications (SJ types) 

have very short junction sequences (4-12bp) and highly variable repeat size.  Among over 30 

independent lac amplifications sequenced, no two shared the same junction sequence 

(Kugelberg et al. 2006).  These short junctions seem unlikely to form by homologous 

recombination, which is required for later amplification.  

 Non-independent revertants (from a single parent culture) do sometimes share a 

junction sequence, suggesting that they are sibs of a duplication-bearing cell that formed and 

divided prior to plating on selective medium (Kugelberg et al. 2006).  During non-selective 

growth, these relatively small (around 20 kb) SJ duplications form at about 6 x 10-

6/cell/division, a 50-fold lower rate than seen for RecA-dependent lac duplications (130kb) 

formed between 1 kb copies of IS3 on the same plasmid (Reams et al. 2012).  Thus in the 

Cairns lac system, as in the Acinetobacter benzoate system, unstable revertants arise by pre-
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existing RecA-independent duplications that are subject to RecA-dependent amplification 

following exposure to selection.   

 Most of the unstable lac revertants seen in the Cairns system have an amplified region 

with tandem direct-order lac copies and are thought to arise by the process diagrammed in 

Figure 1.  However about 1/3 of the unstable revertants have a distinct type of amplification 

consisting of a series of repeats in alternating orientation, head-to-head and tail-to-tail 

(Kugelberg et al. 2006; Kugelberg et al. 2010).  These amplifications are expansions of an 

underlying tandem inversion duplication (TID) that will be described later. 

 About 90% of the Lac+ revertant colonies in the Cairns system are not due to 

amplification, but consist of cells with a stable lac+ revertant allele.  These stable lac+ 

sequence changes were originally thought to arise during selective growth of the amplification 

strains described above (Kugelberg et al. 2006).  However, a growing body of data suggests 

that these changes occur on selective medium in cells that are not growing (Hastings et al. 

2004).  Current evidence suggests that revertants arise from rare cells with multiple copies of 

the lac genes.  Although these cells may be unable to divide on selective lactose medium, 

they can continuously replicate their F’lac plasmid for several days as suggested previously 

(Galitski and Roth 1995). 

 Duplication formation using a particular short recombining sequences  Even though 

exchanges between short repeats may underlie many spontaneous duplications, the rate and 

dependencies of forming specific short (SJ) junctions are difficult to study because the 

selected events can occur between a very wide variety of site pairs.  This problem is 

minimized by assays that select for exchanges between specific short sequences that fuse 

two distant chromosomal regions and cause expression of a gene at the duplication junction.  

These assays severely limit the possible recombining sites to the few that that form a join 

point that provides a selectable phenotype.  This method was first demonstrated some time 

ago using a promoterless histidine operon including a silent hisD gene (Anderson and Roth 

1978).  Selection for hisD gene expression (growth on histidinol), revealed extremely rare 

mutants (frequency 10-9) with a duplication whose join point fused a downstream distant 

foreign promoter to the silent hisD gene.  Most revertant duplications fused hisD gene to the 

end of the argAB operon 100 kb away (Anderson and Roth 1978; Shyamala et al. 1990).  The 

responsible exchanges occurred between two nearly identical 28bp REP intragenic elements 

present in both argAB and his operons.  Other less frequent duplications fused hisD to 
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alternative active promoters by exchanges between less similar REP elements.  In this 

assay, a recA mutation reduced the yield of arg-hisD duplications only about 6-fold and some 

arg-hisD fusions were recovered among the residual revertants that arose without RecA.  The 

contribution of RecA to these exchanges may reflect enhanced recovery of mutants that 

amplified the join point element (Conner 1993).  It has been suggested that the RecA-

independent duplications between REP elements may be generated by side activities of DNA 

gyrase or topoisomerase, which have been shown to bind and cleave REP elements 

(Shyamala et al. 1990; Gilson et al. 1991; Espeli and Boccard 1997).   

 

V   Mechanisms of forming short-junction (SJ) duplications 

Duplications with short repeats (SJ) form without homologous recombination.  How then do 

exchanges occur between such short sequences (sometimes zero base pairs)?  Some 

models involve single strand annealing between overhanging short complementary 

sequences from widely separated parts of the chromosome that can pair without need for 

strand invasion (RecA).  Alternative models invoke template switching or illegitimate 

replicative extensions of 3’ ends as described below.  The following mechanisms are not 

mutually exclusive, but some invoke discontinuous events while others propose a multi-step 

process.  All try to solve the basic problem of recombination-independent joining of separated 

short sequences. 

 

 Illegitimate recombination has been defined as exchanges between sequences with 

little or no similarity, whether or not they lead to duplication or some other rearrangement type.  

Hideo Ikeda and coworkers have measured such exchanges using a sensitive assay in which 

a lambda prophage in the E. coli chromosome generates specialized transducing phages 

(Ikeda et al. 1995).  Exchanges between one site within the prophage and a second site in the 

neighboring region of the E. coli chromosome excise a phage genome that lacks some phage 

genes and acquires some bacterial genes.  These events have been placed into two classes.  

a) Microhomology-independent events are thought to result from errors of topoisomerase and 

gyrase (Ashizawa et al. 1999).  Gyrase mediated exchanges might also contribute to the 

REP-mediated events described above, since gyrase has been found to cause recombination 

in vitro and in vivo (Naito et al. 1984) and is known to bind to REP sequences (Yang and 

Ames 1988).  b) Microhomology-dependent events are attributed to single strand annealing 
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because they are stimulated by the RecE and RecT proteins of the Rac prophage (Shiraishi 

et al. 2006).  At a double strand end, RecE digests 5’ ends to reveal single strand 3’ 

overhangs that are available for pairing catalyzed by the RecT protein.  Given the sensitivity of 

these assays and their association with phage growth, it is not clear how heavily these 

pathways contribute to gene duplication in the bacterial chromosome.  The events described 

by Ikeda and coworkers could also involve processes such as template switching or TID 

modification described below.   

 

 Formation and processing of tandem inversion duplications (TID)   This model 

produces duplications within a single chromosome without need for any genetic exchange 

between sister chromosomes (Kugelberg et al. 2010).  The basic TID unit is actually a 

triplication of a region with copies in alternating orientation (head-to-head, tail-to-tail), whose 

formation is thought to be initiated at quasi-palindromic sequences.  A symmetrical TID is 

diagrammed in Figure 6.  Two mechanisms have been suggested to explain TID formation 

and are outlined below.  Once the basic TID is formed, it can amplify by recombinational 

exchanges between the direct-order repeats that flank the central inverse-order copy, much 

like the amplification drawn for standard tandem duplications in Fig 1B.  Rearrangements of 

this type have been seen in two situations.   

 The simplest example is a TID amplification found in yeast after 300 generations of 

growth under selection for increased dosage of a sulfate transporter (Araya et al. 2010).  The 

rearrangement has 5 tandem copies of the same chromosomal region in alternating 

orientations.  The basic TID has two junction types, one between head-to-head copies and 

another between tail-to-tail copies.  Each junction has a short quasi-palindromic sequence 

that was present in the parent chromosome (See Fig. 6).  In the symmetrical TID, these 

palindromes are extended through the entire inverse order repeat.  Two models to explain the 

origin of the TID are outlined below.  In this yeast example, the initial symmetrical TID was 

presumably amplified further by subsequent recombination between direct order repeats 

within the TID.   

 Amplifications with an asymmetric TID structure are seen in some unstable Lac+ 

revertants appearing under long-term selection in the Cairns system (described above).  

About 30% of the unstable Lac+ revertants in this system carry an amplification with repeated 

lac copies in alternating orientation (Kugelberg et al. 2006; Slack et al. 2006; Kugelberg et al. 
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2010).  Unlike the symmetrical TID junctions seen in yeast, the asymmetrical bacterial TID 

junctions do not form extended symmetrical palindromes and have repeats in each orientation 

are of different sizes (See Figure 6).  The asymmetric lac repeats can be explained as forming 

from an inferred initial symmetrical TID (as that observed in yeast), but with junctions that are 

later remodeled by deletions that remove the origin palindromic junctions and render the join 

points asymmetric.  (See bottom of Figure 6)  Formation of these deletions may be stimulated 

by the palindromic character of the junction (Sinden et al. 1991; Leach 1994).  If the junctions 

are deleted individually, the final product is a TID with two asymmetric junctions (Kugelberg et 

al. 2010).  The remodeling deletions arise between short direct repeats as is typical for 

deletion events.  These short sequences were in inverse-order in the parent but were brought 

into direct order by the TID.    

 The model we favor to explain formation of the initial TID (Fig 6) suggests that a single 

strand 3’ end  (perhaps of the nascent leading strand) forms a snap-back structure that can 

initiate repair replication on the same strand.  Replication continues away from the fork until a 

switch is made back to original leading strand template (See Figure 6). This produces a 

branched structure whose replication or breakage (where indicated) leaves a symmetrical TID 

of the type described above and amplified in yeast.  The extended palindromic junctions are 

subject to frequent deletions, especially in bacteria, where torsional supercoiling may favor 

hairpin extrusion (Sinden et al. 1991).  If both junction types are rendered asymmetric by 

independent deletions, the final product is the asymmetric TID, which can subsequently be 

amplified under selection to produce the  unstable TID amplifications that are 30% of total 

unstable revertants (see bottom of Figure 6.  If a single deletion removes both TID junctions 

with the central repeat, the product is a simple tandem (head to tail) SJ duplication, which can 

amplify become an unstable revertant with a standard direct-order tandem repeat.  According 

to the TID model, both reversed-orientation TID and tandem SJ amplifications form by this 

multistep process with short-lived intermediates.  
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Figure 6   Formation of a tandem inversion duplication (TID).    This model proposes initiation of duplication 
by one palindromic sequence at which a 3’ end can snap back to prime repair synthesis.  Template switching to 
the opposite strand at this replication fork would be aided by a second palindrome.  or closely placed inverse 
repeat.  Resolution or replication leaves three copies of the intervening region – two copies in direct order with a 
central third copy in inverse order.  This same process can in principle operate at a single strand nick far from a 
replication fork.  The product is a symmetrical TID (sTID) whose two junctions have short parental palindromes 
that have been extended in the sTID and may be prone to remodeling by deletion (Kugelberg et al. 2010).  It is 
proposed that observed asymmetric join points form when deletions remove the initial palindrome and leave an 
asymmetric join point generated at the site of the deletion.  A single large deletion that removes both junctions 
and the central inverse-order copy can generate a simple tandem repeat with a short junction sequence.  
Another model achieves the same endpoint by template switching across two diverging replication forks (Brewer 
et al. 2011).  The same structures can be explained by the MMBIR model described below (Hastings et al. 
2009a) in which template switches are not restricted to replication fork regions. 
  

 The key to the TID model is formation of snap-back structures and their use in priming 

repair synthesis.  Considerable evidence supports such replication at snap-backs in phage 

and bacteria and yeast (Ripley 1982; Papanicolaou and Ripley 1991; Butler et al. 1996; 

Rattray et al. 2005; Dutra and Lovett 2006).  Similar synthesis from snap-back palindromic 

sequences has been suggested for the breakage-fusion-bridge model (described below). 

 

A head-to-head amplification resembling the TID structure described above was found 

in yeast following prolonged growth under selection (Araya et al. 2010).  This amplification 

arose between two short palindromes and was explained by a model in which a nascent 

leading single strand with a palindromic 3’ end anneals across the fork to initiate repair 

synthesis templated on the opposite sister chromosome (Brewer et al. 2011).  This replication 
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extends away from the fork of origin and toward another fork moving away at the opposite 

end of a replication bubble.  There it switches back to the original leading strand template with 

the aid of a second palindrome.  Switches at both diverging forks produces a head-to-head 

dimeric circle, which can be extracted and integrated into the chromosome to yield a 

symmetrical TID.  Fork interactions at replication bubbles were also proposed to explain 

duplication by unequal translocation in human cancer cell lines (Howarth et al. 2011).  The 

formation of TID duplications has also been explained using a template switching model that 

does not restrict template switches to replication fork regions (Hastings et al. 2009b; Carvalho 

et al. 2011). 

 

 Duplication by template switching  In several models, joining of dissimilar sequences is 

attributed to replication template switching.  While these models can in principle explain the 

origin of tandem and inverse  (TID) duplications with short junction sequences, they are 

mechanistically a bit tortuous and do little more than restate the features of the duplications 

they explain.  One of the initial models (FoSTes) proposes that the 3’ end of a nascent 

Okazaki fragment anneals with the lagging strand template of a different replication fork on 

the opposite side of the gene being duplicated (Gu et al. 2008).  A subsequent model, called 

Microhomology-Mediated Break-Induced Replication (MMBIR), builds on break-induced 

replication (Anand et al. 2013).  This model suggests that a double strand end is resected to 

produce a 3’-ended single strand overhang that can prime replication at a distant point in 

duplex DNA without benefit of a strand invasion protein.  This replication start juxtaposes 

sequence from the priming strand with that of the newly synthesized template complement.  If 

such forks collapse, the extended 3’ end can reinitiate elsewhere in the genome and thus 

produce complex rearrangements. This illegitimate initiation is said to become more likely 

during growth inhibition due to repression of the enzymes responsible for homologous 

recombination (Hastings et al. 2009b).  The fork made in this way is unstable and subject to 

collapse during subsequent replication.  Each collapse releases a new extended single 3’ end 

that can repeat the priming at a new distant point.  The extending 3’ end thus accumulates 

sequence blocks from multiple genome regions in both orientations.  The process of RecA-

independent replication initiation has been demonstrated in vitro (Li and Marians 2000; Kurth 

et al. 2013). These models may account for some complex rearrangements inferred to occur 

in some metazoan genomes (Liu et al. 2011; Liu et al. 2012), especially those thought to join 
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sequences from different chromosomes.  The models can also accommodate the tandem 

inversion duplications (TID), found in bacteria and yeast. 
	
  

 Duplication and amplification by breakage-fusion-bridge (BFB) cycles with and without 

palindromes   Some time ago Barbara McClintock suggested the breakage-fusion-bridge cycle 

as a way of forming of inversion duplications and amplifications during mitosis (McClintock 

1941).  In her model, a chromosome breaks prior to replication and the broken ends of two 

copies fuse to generate a dicentric chromosome.  (See Figure 7.)  At cell division, this 

dicentric breaks asymmetrically to form one chromosome with a terminal duplication and 

another with a corresponding deletion.  The duplication-bearing chromosome lacks telomeres 

and replicates to form 

sisters that are subject to fusion and formation of another dicentric.  Breakage then produces 

a chromosome with four copies of the repeat (two pairs of inverse-order repeats).  Multiple 

mechanisms have been suggested to explain the breakage, fusion and stabilization final 

product, but repetition of the breakage-fusion-bridge cycle continues to generate higher and 

higher copy number amplifications of inverse-order repeats.   

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 7  The Breakage-Fusion-Bridge (BFB) Cycle.   Suggested many years ago by Barbara McClintock, this 
model explains the alternating orientation of copies seen in some amplification arrays.  Issues are the source of 
the initial breaks, the forces that break a dicentric, the mechanisms of end fusions and the stabilization of an 
array by blocking further end fusions.  Several of these issues have been solved conceptually by the behavior of 
palindromic sequences. 
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Based on behavior of chromosomes during Tetrahymena macronucleus 

development, a model was developed in which a palindromic sequence produces a break.  

Some possible mechanisms are in Figure 8.  A terminal snap-back at this end can prime 

replication leading to formation of a dicentric chromosome that initiates the breakage-fusion-

bridge cycle.  Asymmetric breakage of the dicentric at cell division leaves an inversion 

duplication centered on the palindrome.  The telomeric ends of the original chromosome are 

lost.  The final product carries inverse order repeats of various size regions, whose junctions 

are symmetrical and subject to remodeling to form asymmetric junctions.  Gene amplification 

by breakage-fusion-bridge cycles has been brilliantly reviewed (Tanaka and Yao 2009).  

Palindrome-initiated amplification events of this type have been demonstrated in yeast by 

Lobachev and coworkers (Lobachev et al. 1998; Narayanan and Lobachev 2007).   It should 

be noted that snap-back primer extensions of the types suggested in Figure 8 may also occur 

at single strand nicks and generate TID duplications as described in Figure 7. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8   Use of palindromic sequences for induction of breaks and fusions in BFB model.  The frequent 
association of palindromic sequences with amplifications in mammalian amplification suggested various ways in 
which they might contribute to the events in the breakage-fusion-bridge model.  A break generated near a 
palindrome (left side) can leave ends whose snap-back primes repair synthesis and serves to generate a 
dicentric chromosome (left side of figure).  A cruciform structure can be cut to leave snap-back ends that can 
similarly prime replication to form a dicentric.  Heavy black lines denote duplex DNA and lighter black lines 
denote single strands.  Ends lacking telomeres are likely to be subject to fusion and continued rounds of the 
cycle. 
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VI  Duplication and amplification by multi-step processes  

during growth under selection 

Most models for duplication formation, like those for point mutations, propose a single 

discontinuous event or a cascade of immediately sequential events with intermediate 

structures that cannot be inherited.  However, several other duplication models described here 

involve multi-step processes in which intermediate forms are heritable and therefore are 

subject to remodeling and selection over multiple cell generations.  This is notably true of the 

TID formation process in which the initial symmetrical duplication can be remodeled by 

deletion and later modified and amplified over multiple generations.  This is also true of the 

breakage fusion bridge model in which multiple cell generations may be required to increase 

repeat copy number.  In such processes, duplications can form over several generations.  

Selection can progressively favor steps in their initial formation, their later modification as well 

as their higher amplification.   

 The basic idea is that the initial duplication may form at a high rate and provide some 

modest selective benefit in excess of its cost.  Cell growth is further improved if secondary 

rearrangements that reduce the fitness cost, perhaps by removing selectively unimportant 

parts of the repeated unit.  Lower cost allows higher selective amplification of a tandem 

duplication or a TID, thus improving growth.  In the case of a symmetrical TID duplication, 

junctions are extended quasi-palindromes that are subject to cutting.  These junctions can be 

stabilized by deletions that render the junctions asymmetric or remove the entire central 

inverse repeat to form a simple tandem head-to-tail SJ duplication.  Such nearly perfect 

palindromes are known to stimulate their own deletion (Sinden et al. 1991; Leach 1994).  

These deletions reduce duplication cost and increase the stability of the array.  The 

intermediates in this process are all replicable, allowing duplications to be completed over 

several cell generations.  The observed duplication and amplification junction sequences may 

reflect these secondary remodeling events rather than initial duplication formation. 

 The remodeling of palindromic junctions may be especially true in bacteria, where 

torsional supercoiling can drive hairpin formation and contribute to deletions of symmetrical 

TID junctions.  This may explain the TID amplifications observed in the Cairns system.  In 

eukaryotic chromosomes, toroidal supercoiling may minimize the rate of palindrome 

remodeling and allow quasi-palindromic inversion junctions to persist.  This could explain why 
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yeast retains an unmodified sTID duplication junction while bacterial TID junctions are 

usually asymmetric.  However, double hairpin structures are invoked in models for 

chromosome breakage at palindromes in yeast and mammalian cells (Akgun et al. 1997; 

Cunningham et al. 2003; Narayanan and Lobachev 2007).  These results suggest that even in 

eukaryotes, palindromes may stimulate formation of deletions that remodel duplications and 

make them easier to amplify selectively.  The selective remodeling of duplication junctions 

may make it difficult to infer formation mechanisms from the structure of ancient or even 

recent segmental duplications.  The spacing and relative sizes of the repeated copies are 

likely to depend on the source of the breaks and the extent of selective modification. 

 

 

 

 

VII Amplifications in cancer and in microbes 
 Amplifications are prominent genomic features of many types of malignant cells, 

particularly those of solid tumors (Albertson 2006).  Similarly, amplifications often confer 

resistance to inhibiters used in cancer chemotherapy.  Understanding how these 

amplifications are initiated and how they expand under selection is important to cancer 

prevention, therapy and in predicting the ultimate course of the disease.   

 The models described above emphasize genetic methods to isolate duplications and 

distinguish them from subsequent modification and amplification events.  In contrast, cancer-

associated amplifications are discovered in final form in genomes of malignant cells.  Their 

structures are characterized and interpreted to suggest and support models for their formation.  

Many of the interpreted structures are likely to have arisen during many generations under 

selection for improved growth.  Data on amplifications in cancer cells come from different 

tumor types and from resistance selections of different stringencies imposed on cultured cell 

lines. These results may not all be interpretable in terms of a single consistent model.  

However, one hopes that some unifying principles may ultimately emerge.  More importantly, 

one hopes that an understanding of amplification in microorganisms will help clarify the 

metazoan process.  This seems possible since structures observed and characterized in 

bacteria and yeast are often similar to those in mammalian cells. 
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 Much of the amplification literature on cancer and some on bacteria (Galhardo et al. 

2007; Hastings 2007) treats formation of the amplification as single discontinuous event rather 

than an evolutionary sequential series of occurrences --duplication, remodeling and 

amplification.  Ignoring selection leads to models that invoke sudden cataclysmic events and 

“genomic instability” to explain complex genomes with multiple rearrangements whose 

evolution may have required several events, occurring during many generations of selection 

for improved growth (Liu et al. 2011).  This general viewpoint may also prompt models for 

sudden formation of amplified arrays rather than stepwise expansion of duplications under 

selection (Hyrien et al. 1988; Watanabe and Horiuchi 2005).  Haber and Debatisse pointed 

out that secondary rearrangements complicate the interpretation of cancer cell amplifications 

(Haber and Debatisse 2006).  This problem increases if one considers that these structures 

can develop over many generations under selection.  Selection would appear especially 

important for amplification in situations that allow frequent recombination between direct 

repeats in sister chromosomes or homologs.  In these situations, amplifications are unstable 

and continuous copy loss is likely to restrict achievable copy number opposed by positive 

selection.  Selection may favor changes that minimize loss rates and fitness costs so as to 

allow higher amplification of copy number. 

In somatic cells, infrequent mitotic recombination may limit copy increases within a 

tandem array.  However, a lower rate of copy number increase may be balanced by similar 

reduction in loss rate.  In bacteria, the frequency of cells with an unselected duplication (and 

arguably the degree of amplification of any particular array) comes to a steady state.  This 

occurs when the rate of copy gain (on one hand) balances the rate of copy loss and fitness 

cost (on the other) (Reams et al. 2010; Maisnier-Patin and Roush unpublished results).  

Selection essentially reduces the fitness cost of these arrays and allows the steady state level 

to increase.  Thus short amplifications may arise and persist in somatic cells prior to selection 

and then show rapid expansion and modification when selection is imposed, as might occur 

during tumor progression. 

The effects of selection stringency and copy gain and loss rates may explain the 

evidence that amplifications are common in transformed cell lines but effectively absent from 

a normal somatic cell population (Tlsty 1990; Wright et al. 1990).  We suspect that the 

selections used in these tests demand cells that already have many copies of the targeted 

gene.  In transformed lines, a higher mitotic recombination rate or a higher level of pre-
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existing duplications may allow cells to expand a short pre-existing array and become fully 

resistant.  Cells unable to expand their arrays many not survive the selection.  That is, cells 

with more breaks or less apoptosis in response to breaks, may show better amplification in 

response to stringent selection.   

It has been claimed that amplifications in mammalian cells are only initiated after 

imposition of selection (Tlsty et al. 1989).  This conclusion was based on the negative result of 

fluctuation tests designed to show pre-existing genetic changes (Luria 1951).  Unlike point 

mutations, duplications and short amplifications come to steady state frequencies due to their 

high reversion rates and fitness cost as described above (Reams et al. 2010).   The forces 

responsible for these steady states obscure frequency differences between cultures caused 

by differences in the timing of the initial duplication event.  That is, any frequency elevation 

due to an early duplication event is returned to the steady state and fluctuation is not seen.  

This problem arose in the  Cairns’ bacterial selection system (Cairns and Foster 1991), where 

the absence of fluctuation led to the conclusion that new mutants are initiated under selection.  

These tests could not detect pre-existing copy number variants, which now seem likely to be 

responsible for initiating revertants (Sano et al. (unpublished)). 

The predominant model for gene duplication in mammalian cells is the breakage-

fusion-bridge (BFB) cycle described above in Figures 7 and 8.  Support for this model reflects 

its ability to account for several troublesome features of mammalian gene amplifications. 

1. Mammalian gene amplifications are often tandem arrays of copies in alternating 

orientation (TID).  The BFB model explains the origin of such arrays.  It can even explain 

expansion of the amplification without invoking selection.  That is, an initiating break can 

start a cascade of mechanistically driven cycles that progressively add copies to the 

genome, even if amplification is deleterious.  Now however, similar tandem inversion 

expansions have been seen in both yeast and bacteria, where they are thought to arise in 

alternative ways.  In microbes, formation of amplifications (of direct or inverse-order 

repeats) seem to be driven by prolonged growth under selection for more gene copies 

rather than by repeated BFB cycles (Kugelberg et al. 2006; Slack et al. 2006; Araya et al. 

2010). 

2. While not unique to BFB model, double strand breaks stimulate amplification and 

amplifications are often associated with known fragile sites in DNA (Albertson 2006).  The 

sequence features of fragile sites (A/T rich, G/C skewed) make them prone to cruciform 
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formation (Mishmar et al. 1998; Zlotorynski et al. 2003).  Thus fragile sites are 

attractive as a source of breaks needed for BFB mechanism, but may also be source of 

snap-back structures that contribute to amplification in other ways (Narayanan and 

Lobachev 2007). 

3. Palindromic sequences are often associated with ends of the amplified segments (Ford et 

al. 1985; Stark et al. 1989).  The use of a palindrome in amplification was clearly 

demonstrated in Tetrahymena and explained using the breakage fusion bridge cycle 

(Tanaka and Yao 2009).  Palindromes fit with BFB cycle since they can generate breaks 

and by hairpin cutting and snap-back replication can generate the dicentric chromosome 

called for by the BFB model.  This may be the correct interpretation, but it is important to 

remember that other models for inversion duplication use palindromic sequences in 

independent ways. 

 

The simplest BFB model generates inversion-duplications with various repeat sizes 

separated by various size spacer regions, due to variation in breaks sites and end joining. 

This structure reflects the positions of breaks at each turn of the cycle outlined in Figure 7 and 

diagrammed in Figure 8.  While this irregular structure is seen in some situations, arrays are 

often described as containing repeats of uniform size, separated by rather small regions that 

are extensions of one copy (Hyrien et al. 1988; Legouy et al. 1989; Okuno et al. 2004; Kitada 

and Yamasaki 2007). The actual joins between inverse-order sequences show very short 

junction repeats (order of 10 base pairs).  This has been taken as support for duplication by 

BFB and the microhomologies attributed to NHEJ-dependent end fusions.  One of these 

amplifications will be described below. 

There is evidence in yeast that breakage and fusion aspects of BFB are explained not 

by NHEJ, but by processing of palindromes (Narayanan and Lobachev 2007).  That is, a 

palindrome can assume a cruciform structure and be cut asymmetrically to generate two 

chromosome fragments, each with a cap formed by one arm of the cruciform  (Figure 8).  This 

snap-back provides a primer that can stimulate replication of the chromosome.  Thus 

palindrome processing replaces the break and allows replication to generate a dicentric 

without fusion.   

A simple yeast TID amplification recovered after prolonged selection for gene 

amplification is diagrammed in Figure 9 (top).  One can account for its structure if the 
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indicated palindromes (stems and loops) allowed a 3’ end to pair across a fork and prime a 

reverse order copy as suggested (Araya et al. 2010; Brewer et al. 2011).  It could also form by 

snap-back repair synthesis as suggested for bacterial TID duplications (Kugelberg et al. 2010) 

and diagrammed in Figure 6.  Regardless of the duplication mechanism, selection then favors 

further amplification of the basic three-copy TID unit using unequal sister-strand exchanges 

between tandem repeats that increase copy number from the three that are characteristic of a 

basic TID unit to the final five copies observed following selection.  In this example, the basic 

unit appears to have amplified without prior modification.  Each spacer between repeats 

includes only the closely-spaced inverse-order sequences whose pairing is proposed to 

initiate the duplication.   

 
 
 
Figure 9  Amplifications characterized in yeast and bacteria.   (Top) A yeast amplification was recovered 
following prolonged growth selecting for increases in the SUL1 product.  The rearrangement appears to have 
arisen between two palindromic regions.  A series of 5 identical copies of the amplified region are present in 
alternating orientation (only 3 copies are shown).  It seems likely that formation involved a snap-back structure at 
each palindrome and that the initial structure has not been modified by subsequent rearrangement, since the 
junction microhomologies are in inverse order.   Unequal recombination caused the further amplification from 3 to 
5 copies.  (Bottom)  A bacterial amplification, also recovered after prolonged selection, shows different-sized 
repeats in opposite orientation – here the microhomologies are not palindromic.  This is proposed to have arisen 
following replication from snap-back structures (as seen in yeast) to form asymmetrical inversion-duplication with 
extended palindromes at each junction.  The inferred initial inversion duplication (pictured) was then stabilized by 
asymmetric deletions that removed the initial junction palindrome and left the observed amplification. 
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In bacteria, the observed microhomologies at TID junctions do not include inverse 

repeats but rather a short micro-homology found at widely separated points in the genome 

(See bottom of Figure 9.)  These junctions, like those of tandem duplications have been 

attributed to secondary deletions that remove the original junction and shorten the duplicated 

region as diagrammed in Figure 7.  It is inferred that the initial duplication in bacteria is likely 

to be a symmetrical inversion duplication (sTID) like that seen in yeast.  That is, the sTID 

occurs first and is then modified and probably stabilized by deletions that render it asymmetric. 

This process was diagrammed in Figure 7 and in more detail in Figure 9 (bottom).  These 

deletions are frequent due to the stimulatory effects of the palindromic junctions, which are 

unstable in bacteria.  The deletion process can leave different-sized repeats in opposite 

orientation, depending on the end points of the deletions.  (See bottom of Figure 9). 

The BFB model predicts that mammalian amplifications consist of multiple pairs of 

large inverse repeats spaced at variable intervals and perhaps of variable size depending on 

the positions of the several chromosome breaks.  In contrast, somatic cell amplifications are 

often described as having multiple identical inverse-order repeats separated by a spacer of 

several kilobases in a regular tandem array (top of Figure 10). The figure describes a 

particular amplification with 11 repeats characterized by Kitada et al. (Kitada and Yamasaki 

2007).  The junction between one side of the spacer and adjacent inverse-order sequence 

has microhomologies of a few base pairs (4 and 2bp in this case), indicated by short arrows in 

the figure.  The spacer regions and microhomologies can be attributed to a BFB cycle in 

which fusion was accomplished by NHEJ following resection of one broken end.   

However the structure could also arise from a pre-existing larger (possibly irregular) 

duplication formed by several BFB cycles that is later modified by deletion as was suggested 

for bacterial TID amplifications (Kugelberg et al. 2010).  This alternative view is diagrammed 

at the bottom of Figure 10, where the microhomologies are the point at which a deletion 

removed the junction region.  This leaves inverse-repeats that differ in length by the size of 

the spacer region.  This sort of join-point deletion (“palindrome breaking”) has been suggested 

previously to explain such amplifications (Akgun et al. 1997; Cunningham et al. 2003; Kitada 

and Yamasaki 2007).   

In the pictured mammalian amplification (Figure 10), the increase in copy number from 

the basic three to 11 copies, like the yeast increase to five in Figure 9, seems likely to result 

from secondary unequal homologous recombination between direct-order sequences within 
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the initial inversion-duplication (See Figure 1 above.)  The modifying deletions may allow 

higher amplification by removing unstable palindromes with significant fitness cost.  In some 

cases, junctions may reflect deletions that formed between more substantial sequence 

repeats, such as Alu copies (Hyrien et al. 1987). 

 

 

 

 

 

 

 

 

 

 

 

 

 
	
  

	
  

	
  

 
 
Figure 10.  Two views of an amplification   The diagram describes three repeats of an  
11-copy amplification selected in a human cell line for amplification of the MDR1 gene (Kitada and Yamasaki 
2007) (Top).  The inverse order repeats are described as identical with spacers, but can also be viewed as 
distinct sized repeats since the spacers are actually continuations of the amplified region.  Formation of this 
structure can be explained in several ways, but is consistent with deletions modifying a larger initial inversion 
duplication. 
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