

A Rationale for Autoinduction of a Transcriptional Activator: Ethanolamine Ammonia-Lyase (EutBC) and the Operon Activator (EutR) Compete for Adenosyl-Cobalamin in *Salmonella typhimurium*

DAVID E. SHEPPARD¹* AND JOHN R. ROTH²

School of Life and Health Sciences, University of Delaware, Newark, Delaware 19716,¹ and Department of Biology, University of Utah, Salt Lake City, Utah 84112²

Received 12 August 1993/Accepted 31 December 1993

The ethanolamine utilization (*eut*) operon of *Salmonella typhimurium* is controlled by a positive regulatory protein (EutR) which stimulates *eut* operon expression in response to the simultaneous presence of two effectors, ethanolamine and adenosyl-cobalamin (Ado-B₁₂). Ado-B₁₂ is a cofactor for ethanolamine ammonia-lyase (lyase), the first enzyme in the ethanolamine-degradative pathway. The dependence of this pathway on the use of Ado-B₁₂ as an effector in *eut* operon induction may be explained by its role in the degradation of ethanolamine and the fact that this cofactor is not always made by *S. typhimurium*. The *eutR* gene lies within the *eut* operon, and its autoinduction is required for maximum operon expression. Evidence is presented that the placement of the *eutR* regulatory gene within the operon provides a means of balancing the competition between lyase and the regulatory protein for a very small pool of Ado-B₁₂. Since both lyase and the regulatory protein are induced, they can compete more equally for a small pool of Ado-B₁₂. This permits both continued *eut* operon induction and lyase activity. Two general observations support this model. First, mutations that inactivate lyase allow the operon to be fully induced by a lower level of exogenous cobalamin (CN-B₁₂) than required by a wild-type operon. This increase in sensitivity is measured as a reduction in the apparent *K_m* for operon induction by exogenous CN-B₁₂. Second, the maximum level of operon induction by excess CN-B₁₂ is dictated by the level of EutR regulatory protein, regardless of the level of lyase.

The *eut* operon of *Salmonella typhimurium* encodes enzymes necessary for utilization of ethanolamine as a carbon, nitrogen, and energy source (Fig. 1) (21-23). The first enzyme in the ethanolamine-degradative pathway, ethanolamine ammonia-lyase (lyase) (EC 4.3.1.7) (4-6, 11, 24), catalyzes conversion of ethanolamine to acetaldehyde and ammonia. The two protein subunits of lyase are encoded by the *eutB* and *eutC* genes (22). A second enzyme in the pathway, acetaldehyde dehydrogenase (EC 1.2.1.10) (17, 18) catalyzes conversion of acetaldehyde to acetyl coenzyme A and is encoded by the *eutE* gene. Lyase activity alone allows utilization of ethanolamine as a nitrogen source, whereas dehydrogenase is also required to initiate utilization of ethanolamine as a carbon source (7). Adenosyl-cobalamin (Ado-B₁₂) performs two distinct functions in ethanolamine utilization; it is a cofactor for lyase activity and is required, with ethanolamine, as an effector for *eut* operon induction (21-23). Induction of the *eut* operon by these two effectors requires the action of a positive regulatory protein, EutR. The *eutR* gene is located at the promoter distal end of the *eut* operon (Fig. 1). In the absence of *eut* operon induction, the *eutR* gene is expressed by one (*eutP_H*) or more weak constitutive promoters located within the operon. This low constitutive level of EutR, with the effectors ethanolamine and Ado-B₁₂, initiates induction of the *eut* operon. Induced operon expression from the main promoter (*eutP_I*) (Fig. 1) can result in as much as a 200-fold increase in transcription of the *eutR* gene. This increase in EutR is required for full induction of the

eut operon (23). The autoinduction of the EutR regulatory protein is the object of this study.

Autoinduction of EutR seems to help the operon manage its regulation in the face of low pools of Ado-B₁₂ and competition from lyase for binding of Ado-B₁₂. Ado-B₁₂ can be synthesized de novo by *S. typhimurium* anaerobically but not aerobically (15, 16). Under anaerobic growth conditions, cells contain approximately 100 molecules of cobalamin (1, 2). Under both aerobic and anaerobic conditions, exogenously supplied Ado-B₁₂ or cyanocobalamin (CN-B₁₂) can be imported (3, 22), increasing the cobalamin level to several thousand molecules per cell (1). Imported CN-B₁₂ can be converted to Ado-B₁₂ by the *cobA* gene product, thereby providing this effector and cofactor under aerobic conditions (13). Regardless of whether these corrinoids are synthesized or imported, a small pool of not more than a few thousand molecules of Ado-B₁₂ must serve as inducer of the *eut* operon (by EutR) and as cofactor for the pool of any newly synthesized lyase enzyme. One might expect that the new lyase molecules, produced following induction, would compete with the EutR regulatory protein for limiting levels of Ado-B₁₂.

Two consequences of the autoinduction of EutR regulatory protein may be important for achieving and maintaining levels of *eut* operon induction that are sufficient for ethanolamine utilization. First, the increase in EutR regulatory protein levels insures that the major *eut* promoter (*eutP_I*) approaches saturation with the EutR-ethanolamine-Ado-B₁₂-activating complex. An increased level of EutR protein would allow significant levels of the activating complex to form, even at relatively low intracellular concentrations of Ado-B₁₂. Second, under inducing conditions, a parallel increase in EutR and lyase could prevent newly synthesized lyase from sequestering a

* Corresponding author. Mailing address: School of Life and Health Sciences, University Delaware, Newark, DE 19716. Phone: (302) 831-2782. Fax: (302) 832-2281. Electronic mail address: deshep@brahms.udel.edu.

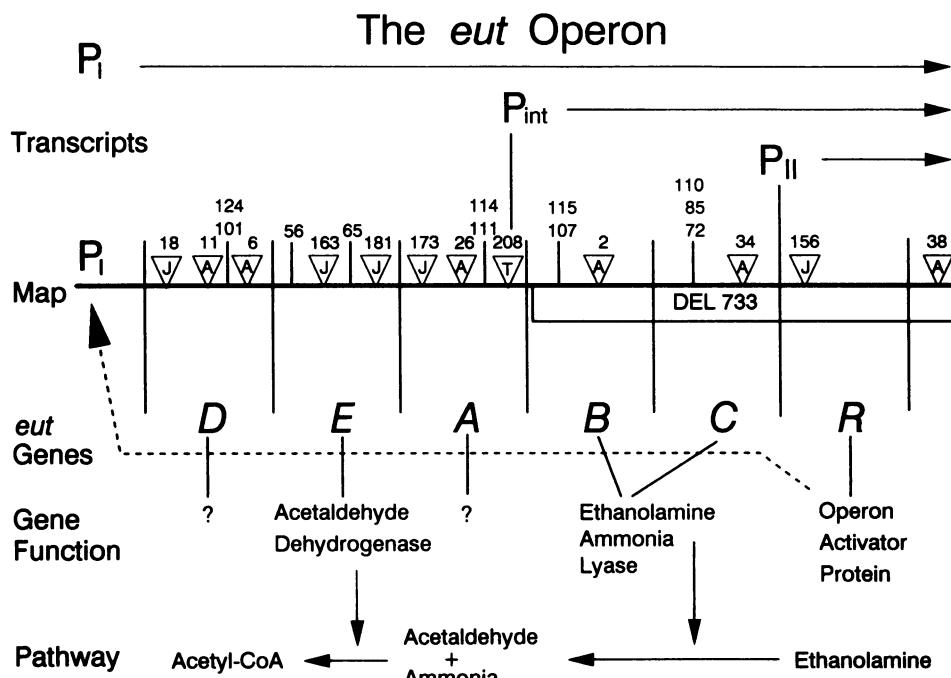


FIG. 1. *eut* operon. The pathway for ethanolamine breakdown to acetyl coenzyme A (acetyl-CoA) is shown at the bottom of the figure. The horizontal line in the middle is the genetic map, with inferred transcription starts indicated above. Inverted triangles indicate insertion mutations; J, Mu dJ insertion; A, Mu dA insertion; T, Tn10d(Tc) insertion; allele numbers are given above the triangles. Other numbers above the map indicate point mutations. Mutation DEL733 is a constructed deletion that extends from the insertion *eut*-5::Mu dA (located near the border between the *eutA* and *eutB* genes) rightward to the *cysA* gene. *P*_{int} is a promoter [(probably within *eutA208*::Tn10d(Tc))] which was created or activated by mutation.

disproportionate amount of Ado-B₁₂. Such a mechanism could partition Ado-B₁₂ more equitably between the regulatory protein and lyase, thereby permitting both continued degradation of ethanolamine (by lyase) and *eut* operon induction (by EutR).

The proposed sequence of events in *eut* operon induction can be summarized as follows. Initial induction is achieved with the effectors ethanolamine and Ado-B₁₂ and the basal levels of EutR regulatory protein. EutR levels increase by autoinduction, and this allows the maximum level of expression typical of the *eut* operon to be achieved. In addition, the coordinated induction of both EutR and lyase permits limiting Ado-B₁₂ to continue to play a significant role as both cofactor for lyase and effector for operon induction.

In this study, strains that produce altered relative levels of lyase and activator protein have been constructed. The effect of these alterations on apparent *K_m* values for induction by exogenous CN-B₁₂ and on maximum operon expression have been used to infer the distribution of Ado-B₁₂ between lyase and EutR protein. The results confirm some of the predictions inherent in the above model for *eut* operon induction. (i) Increased levels of EutR protein result in a higher maximum level of operon induction; (ii) reduction or loss of lyase allows maximum *eut* operon expression to occur at reduced levels of Ado-B₁₂ effector, suggesting that the normal binding of the Ado-B₁₂ cofactor to lyase represents a competition for available Ado-B₁₂.

MATERIALS AND METHODS

Bacterial strains and transposons. All strains are derivatives of *S. typhimurium* LT2 (Table 1). The *eut* mutations have been

previously described previously (21–23). The Mu dJ(Kn) (9) and Mu dA(Ap) (8) elements are transposition-defective derivatives of the specialized transducing phage Mu d1(Ap^r lac cts) (14). A transposition-defective Tn10 derivative, Tn10d(Tc) (27), was used by Roof and Roth to produce the *eutA208*::Tn10d(Tc) mutation described here (21).

Media. Complex medium was nutrient broth (NB) (0.8%; Difco Laboratories) supplemented with NaCl (0.5%). The carbon-free minimal medium was NCE or Vogel and Bonner E medium (12), and minimal medium free of both carbon and nitrogen sources was NCN (20). Ethanolamine hydrochloride (0.2%; Aldrich) was used as a carbon source in NCE medium, as a nitrogen source in NCN medium with glycerol (0.2%), or both as the carbon and nitrogen source in NCN medium. CN-B₁₂ (Sigma Chemical Co.) was used as the exogenous vitamin B₁₂ source at the concentrations specified. Amino acids and purines were added to minimal medium as described previously (12). Complex medium contained the following antibiotics at the concentrations indicated: ampicillin, 30 µg/ml; kanamycin, 50 µg/ml; and tetracycline, 20 µg/ml. Agar (1.5% Difco) was added to E, NCE, NCN, and NB media to prepare solid media.

Genetic techniques. Transductional crosses were performed with the high-frequency generalized transducing phage mutant P22 HT105/1 *int*-201 as previously described (25). Transductant clones were purified and made phage free by streaking for single colonies on nonselective green indicator plates (10).

Enzyme assays. Strains to be assayed for β-galactosidase activity were inoculated from a 1/150 dilution of an overnight NB culture into 2.5 ml of NCE-glycerol medium containing 20.5 mM ethanolamine and CN-B₁₂ concentrations ranging from 0 to 0.08 µM. All strains employed were able to transport

TABLE 1. Bacterial strains used

Strain	Genotype LT2
TT10271	<i>eutD18::Mu dJ</i>
TT10638	<i>eutB2::Mu dA</i>
TT10642	<i>eutD6::Mu dA</i>
TT10647	<i>eutD11::Mu dA</i>
TT10662	<i>eutA26::Mu dA</i>
TT10670	<i>eutC34::Mu dA</i>
TT10674	<i>eut-38::Mu dA</i>
TT11704	<i>eut DEL733 (cysA1585 Mu dA eut-5)</i>
TT13738	<i>eutR156::Mu dJ</i>
TT13745	<i>eutE163::Mu dJ</i>
TT13754	<i>eutA173::Mu dJ</i>
TT13762	<i>eutE181::Mu dJ</i>
TT14492	<i>eutA208::Tn10d(Tc) eut-38::Mu dA</i>
TT17296	<i>eutD18::Mu dJ eutA208::Tn10d(Tc) P_{int} eutB115</i>
TT17297	<i>eutD18::Mu dJ eutA208::Tn10d(Tc) P_{int} eutB107</i>
TT17298	<i>eutD18::Mu dJ eutA208::Tn10d(Tc) P_{int} eutC110</i>
TT17299	<i>eutA208::Tn10d(Tc) eutR156::Mu dJ</i>
TT17300	<i>eutA208::Tn10d(Tc) P_{int} eutR156::Mu dJ</i>
TT17301	<i>eutA208::Tn10d(Tc) eut-38::Mu dA</i>
TT17302	<i>eutA208::Tn10d(Tc) P_{int} eut-38::Mu dA</i>
TT17303	<i>eutA208::Tn10d(Tc) P_{int} eutB115 eut-38::Mu dA</i>
TT17304	<i>eutA208::Tn10d(Tc) P_{int} eutC110 eut-38::Mu dA</i>
TT17305	<i>eutA208::Tn10d(Tc) P_{int} eutB107 eut-38::Mu dA</i>
TT17306	<i>eutA208::Tn10d(Tc) P_{int}</i>
TT17307	<i>eutA208::Tn10d(Tc) P_{int} DEL733</i>
TT17308	<i>eutA208::Tn10d(Tc) P_{int} DEL733</i>
TT17309	<i>eutD124 eut-38::Mu dA</i>
TT17310	<i>eutE56 eut-38::Mu dA</i>
TT17311	<i>eutE65 eut-38::Mu dA</i>
TT17312	<i>eutA114 eut-38::Mu dA zfa-3648::Tn10 metE205 ara-9</i>
TT17313	<i>eutA111 eut-38::Mu dA</i>
TT17314	<i>eutB115 eut-38::Mu dA</i>
TT17315	<i>eutB107 eut-38::Mu dA</i>
TT17316	<i>eutC85 eut-38::Mu dA</i>
TT17317	<i>eutC110 eut-38::Mu dA</i>
TT17318	<i>eutC72 eut-38::Mu dA</i>
TT17319	<i>eutD101 eut-38::Mu dA</i>
TT17320	<i>eutD18::Mu dJ eutA208::Tn10d(Tc) P_{int}</i>
TT17321	<i>eutD18::Mu dJ eutA208::Tn10d(Tc)</i>

CN-B₁₂ and to catalyze its conversion to Ado-B₁₂. Following growth to mid-exponential phase (approximately 8 h) at 37°C on a New Brunswick shaker, model 50, cells were held at 4°C until assayed. β-Galactosidase enzyme activity was determined as previously described by Miller (19), with toluene-sodium dodecyl sulfate-permeabilized cells. Enzyme activity was expressed in units defined as nanomoles of nitrophenol produced per minute per optical density at 650 nm of cell culture turbidity.

Determination of apparent *K_m* values for *eut* operon induction by CN-B₁₂. Strains were grown in NCE-ethanolamine-glycerol medium over a range of CN-B₁₂ concentrations. Induction of the *eut* operon was determined by measuring β-galactosidase expression from a Mu d lac operon fusion element inserted in the *eut* operon. When *K_m* determinations were made for strains containing specific *eut* gene insertion mutations, β-galactosidase expression was measured directly from the Mu d lac insertion fusion in that particular *eut* gene. When *K_m* determinations were made for strains containing point mutations in specific genes, *eut* operon expression was measured from the *eut-38::Mu dA lac* fusion insertion located distal to all known point mutations. This insertion mutation does not result in any known *eut* phenotype (21–23) and is used routinely in this study either to measure the wild-type rate of *eutR* expression or to measure the effect of a *eut* point mutation

on downstream *eut* operon expression. Apparent *K_m* values for *eut* operon induction by CN-B₁₂ were determined from the x-axis intercept of double-reciprocal plots of the following type: (1/percent maximal β-galactosidase) versus (1/CN-B₁₂).

Isolation of mutants with a new internal promoter. A saturated NB culture of strain TT17299 (*eutA208::Tn10d(Tc) eutR156::Mu dJ lac*) (0.1 ml) was plated onto NCE-lactose agar medium. After several days, spontaneous Lac⁺ mutant colonies arose with a frequency of about 10 to 20 per plate. One isolate (TT17300) was characterized further. The mutation in this strain results in constitutive expression of the *eutR156::Mu dJ lac* fusion and is referred to as *P_{int}*.

RESULTS

Experimental design. In the experiments presented below, the general procedure is to construct a series of strains, each with a Mu d lac operon fusion at some point in the *eut* operon. In these strains, the inducibility of β-galactosidase is dictated by the position of the fusion and the presence of additional mutations. These strains vary in their levels of EutR and lyase, and these differences affect regulation of the main promoter. These strains were grown with an excess of ethanolamine (20.5 mM) and various concentrations of CN-B₁₂. Each culture was assayed for β-galactosidase to determine the level of induction of the *eut* operon achieved at each concentration of CN-B₁₂. The internal concentration of the effector Ado-B₁₂ was increased following the addition of exogenous CN-B₁₂ (1). Although the internal levels of Ado-B₁₂ have not been measured directly, the linear increase in *eut* operon induction over a limiting range of exogenous CN-B₁₂ concentrations (Fig. 2A) suggests a proportional relationship between exogenous concentrations of CN-B₁₂ and internal concentrations of Ado-B₁₂. The apparent *K_m* value for induction by exogenous CN-B₁₂ was determined. The percent maximum β-galactosidase was used to determine *K_m* values because strains containing different Mu d: lac insertion mutations exhibit different maximum levels of β-galactosidase expression. The maximum achievable level of operon induction at excess CN-B₁₂ was also determined.

Some strains tested carry the *eut-38::Mu dA* insertion; this is an insertion within the operon, distal to all known *eut* genes. This insertion creates a *eut::lac* operon fusion but causes no known Eut phenotype. We presume that expression of the *lacZ* gene in this strain reflects the behavior of a wild-type *eut* operon. Additional mutations were added to this strain to assess their effect on operon induction. Although the *eut-38::lac* fusion detects the combined effect of the *eutP_I* and *eutP_{II}* promoters, the *eutP_{II}* promoter is weak and only the *eutP_I* promoter is stimulated by the EutR-ethanolamine-Ado-B₁₂ complex (21–23). Thus the variation in *eut* operon induction in response to the CN-B₁₂ concentration reflects the response of the *eutP_I* promoter to Ado-B₁₂ (via the EutR-ethanolamine-Ado-B₁₂ complex.). The locations of fusions, point mutations, and the promoters used can be seen in Fig. 1.

Point mutations affect sensitivity of the operon to induction by exogenous CN-B₁₂. When strains were surveyed for inducibility of the *eut* operon by low levels of CN-B₁₂, two patterns of induction were seen. Sensitive strains were induced by a significantly lower level of CN-B₁₂ than insensitive strains. This is illustrated in Fig. 2A. A strain with a simple *eut-38::lac* fusion (TT10674) was insensitive to induction. This sensitivity was greatly increased by the addition of a mutation eliminating lysase production (*eutC110*). A mutation in the dehydrogenase (*eutE56*) had only a slight effect on induction sensitivity. The sensitive and insensitive strains differed by about 10-fold in

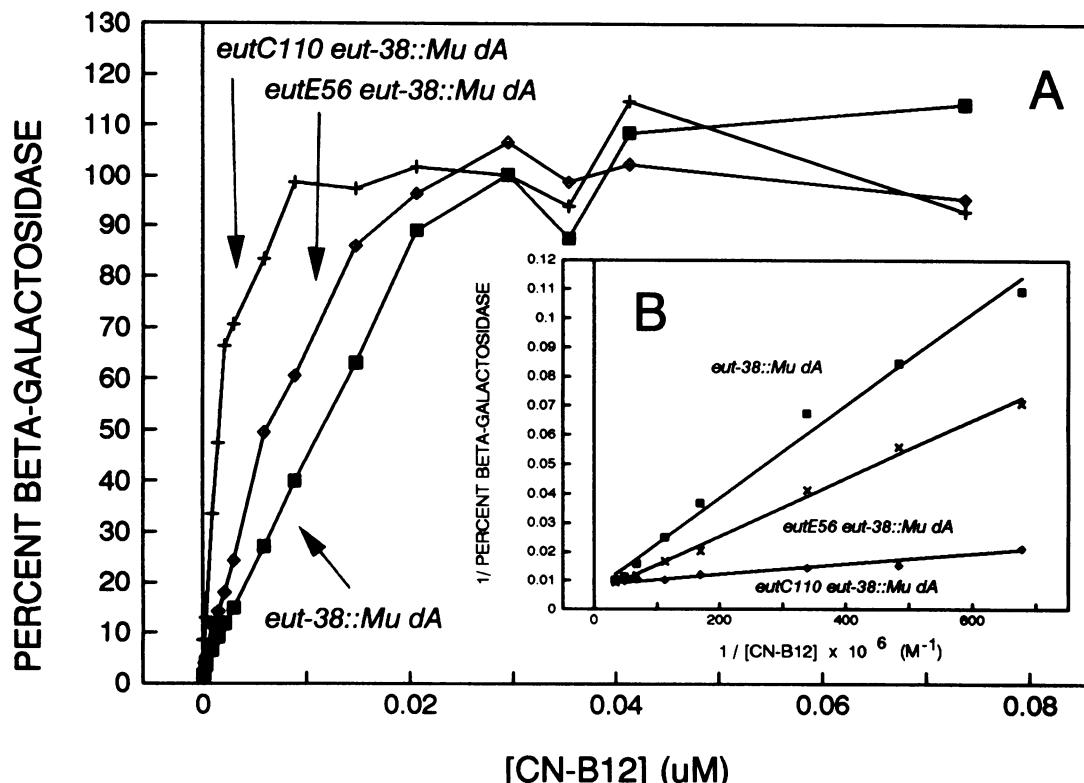


FIG. 2. Induction of the *eut* operon by exogenous CN-B₁₂: effect of *eut* point mutations on induction sensitivity. Cultures were grown aerobically on NCE-glycerol-ethanolamine as described in Materials and Methods over a range of CN-B₁₂ concentrations. β -Galactosidase activities for each strain are presented as a fraction of the maximum induced level achieved. This was done to allow easy and direct comparison of the sensitivities of operon induction in these strains by exogenously supplied CN-B₁₂, some of which show very different maximum induced levels of operon inducitor. These differences in maximum induced levels in strains with point mutations and insertion mutations (Tables 2 to 4) will be described later. (A) Operon expression was measured from a Mu dA *lac* fusion located in a noncritical downstream region of the *eut* transcription unit. The strains assayed were *eut*-38::Mu dA (TT10674), *eut*E56 *eut*-38::Mu dA (TT17310), and *eut*C110 *eut*-38::Mu dA (TT17317). (B) Double-reciprocal plots were used to demonstrate the differences in induction sensitivity of the various strains and to calculate the apparent K_m values for induction by CN-B₁₂ (Ado-B₁₂). Linear regression analysis was used to fit the data to straight lines.

their apparent K_m values for induction by exogenous CN-B₁₂ (Fig. 2B and Table 2).

When this survey was extended to a series of point mutations, the results (Table 2) provided the initial evidence suggesting that lyase levels might affect induction sensitivity. The most striking increase in sensitivity was caused by mutations in genes for lyase (*eutB* and *eutC*). Mutations in genes other than lyase had only small effects on the apparent K_m of the operon for induction by exogenous CN-B₁₂.

While these results were suggestive, they included some exceptions. Several mutations outside of *eutB* and *eutC* (e.g., *eut*E65 [Table 2]) caused a significant increase in sensitivity. We suggest that these mutations cause a slight reduction in lyase levels by exerting a polar effect on expression of the *eutB* and *eutC* genes. Furthermore, two mutations in the *eutC* gene failed to exhibit the increase in induction sensitivity. One of these mutations (*eutC*72) is "leaky" and likely to allow production of a lyase with ability to bind Ado-B₁₂; the other mutation is not phenotypically leaky but may produce a protein able to bind Ado-B₁₂. It is possible that only the *eutB* subunit of lyase binds Ado-B₁₂ directly; if this were the case, then many *eutC* mutations might allow production of nonfunctional lyase in which the wild-type *eutB* subunit is capable of binding Ado-B₁₂. Despite the exceptions, the general pattern of mutations affecting sensitivity suggested that lyase influences sensitivity to induction by Ado-B₁₂.

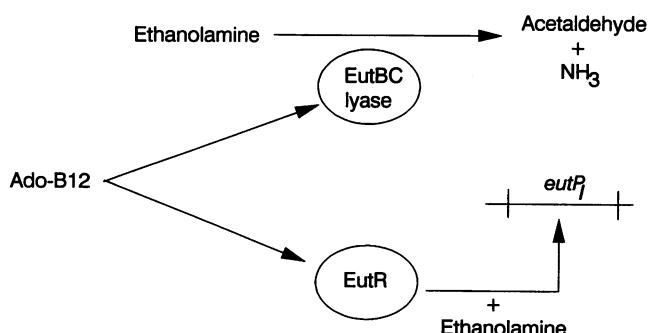
These data suggested that lyase might sequester Ado-B₁₂, making it more difficult for limiting levels of Ado-B₁₂ to induce the operon in the face of an increasing level of lyase (Fig. 3). The data above could be explained if mutations that eliminate lyase (or its Ado-B₁₂-binding ability) allowed all Ado-B₁₂ to serve as inducer and thus caused the sensitive induction phenotype seen. Stated as a model for function of the normal operon, we suggest that the operon is very sensitive to initial induction (no lyase is present), but full induction occurs only if Ado-B₁₂ levels are sufficient to populate both the lyase and the regulatory protein. Since both lyase and the activator protein are induced together, they can compete equally for available Ado-B₁₂ throughout the course of induction. If a sufficient level of Ado-B₁₂ is present, the cell can populate both ligase and the activator protein and maintain induction even when lyase levels are very high. Maintenance of maximal induction may require sufficient Ado-B₁₂ to saturate the high levels of both lyase and activator protein.

Fusions early in the operon show increased sensitivity to induction. To test the above-described model, we assayed strains with insertion mutations (Mu dJ and Mu dA) which form fusions of the *lac* operon to various points in the *eut* operon. The fusion points are within structural genes, either within or promoter-proximal to the *eutB* and *eutC* genes (Fig. 1). All of the upstream insertion mutations are strongly polar on expression of distal genes in the operon and eliminate

TABLE 2. Apparent K_m values and maximum *eut* operon induction by Ado-B₁₂; effect of *eut* point mutations on induction of the *eut-38:lac* fusion

Strain	<i>eut</i> point mutation	K_m (10 ⁹)	K _m relative to <i>eut-38:Mu dA</i>	<i>eut</i> operon induction (β -galactosidase) ^a		
				Uninduced	Fully induced	Fully induced relative to <i>eut-38:Mu dA</i>
TT10674		23.3	1.00	4.9	305.8	1.0
TT17309	<i>eutD124</i>	9.7	0.42	4.2	165.3	0.5
TT17319	<i>eutD101</i>	9.6	0.41	5.0	192.6	0.6
TT17310	<i>eutE56</i>	18.2	0.78	4.4	177.8	0.6
TT17311	<i>eutE65</i>	5.4	0.23	4.5	105.5	0.3
TT17313	<i>eutA111</i>	7.9	0.34	4.6	208.2	0.7
TT17312	<i>eutA114</i>	20.7	0.89	4.4	213.5	0.7
TT17314	<i>eutB115</i>	1.3	0.06	4.6	316.4	1.0
TT17315	<i>eutB107</i>	1.4	0.06	3.8	239.5	0.8
TT17317	<i>eutC110</i>	1.2	0.05	3.5	39.9	0.1
TT17316	<i>eutC85</i>	12.4	0.53	4.6	293.0	1.0
TT17318	<i>eutC72</i>	38.5	1.65	4.4	327.7	1.1

^a Cultures were grown for analysis as described in Materials and Methods. Induction of the *eut* operon was measured from the *eut-38:lac* fusion. Apparent K_m values for CN-B₁₂ induction were determined from the value of the x-axis intercept of reciprocal plots: (1/percent maximal β -galactosidase) versus (1/CN-B₁₂) (Fig. 2).


expression of both the *eutB* and *eutC* genes. These fusion strains retain inducibility by Ado-B₁₂ because the *eutR* gene is intact and can be expressed from the weak internal promoter (P_{II}). The behavior of these fusion strains (all of which lack lyase) was compared with behavior of the distal fusion (*eut-38*), which leaves the entire operon intact. Typical results are presented in Fig. 4. When operon induction is monitored from internal fusion points, the sensitivity to induction is much greater than that seen for the fusion outside of the coding sequences, *eut-38:lac*. The apparent K_m values for induction of these fusions by exogenous CN-B₁₂ are presented in Table 3; all the fusions show a strongly increased sensitivity (reduced apparent K_m values) for induction compared with that of the *eut-38:lac* fusion.

P_{int}, a mutationally altered internal promoter that causes high constitutive expression of lyase and EutR regulatory protein. To test further the hypothesis that lyase and EutR regulatory protein compete for Ado-B₁₂, we isolated a mutant that expresses both the lyase and regulatory protein genes at high constitutive levels. This mutant was selected as a derivative of a strain (TT17299) which carries a *Tn10d(Tc)* insertion in the *eutA* gene, just promoter-proximal to the lyase genes (Fig. 1). This strain also carries insertion *eutR156::Mu dA lac*, which fuses the *lac* operon to the *eutR* gene. In this strain, the *eutA208::Tn10d(Tc)* polar insertion mutation prevents expression of all distal genes by the major *eut* promoter (*eutP_I*). The

low level of expression of *eutR:lac* from the internal weak constitutive *eutR* promoter *eutP_{II}* is not sufficient to permit this strain to use lactose as a sole carbon and energy source. By selecting for Lac⁺ derivatives of this strain, one can obtain mutants in which the transcription of the *eutR:lac* fusion is increased. One Lac⁺ derivative, TT17300, showed an constitutive level of β -galactosidase fivefold higher than that of a fully induced wild-type *eut* operon measured with a fusion distal to all structural genes (Table 4, lines 1 to 4). When the *eutR156:lac* fusion was replaced with the *eut-38:lac* fusion (to form strain TT17302), the new promoter, *P_{int}*, caused constitutive expression of the distal *lac* fusion at levels slightly higher than that seen during full induction of *P_{int}* strains with the same fusion (Table 4, lines 4 to 6).

Map position of *P_{int}*. Several pieces of evidence suggest that the mutation which creates or activates *P_{int}* is upstream of the *eutB* gene and probably lies within the *eutA208::Tn10d(Tc)* element in strain TT17300. In the transductional crosses used in mapping and in construction of several strains, the *P_{int}* mutation has never been separated by recombination from the *Tc^r* determinant. To test linkage of *P_{int}* to *eutA208::Tn10d(Tc)*, a P22 transducing phage lysate grown on TT17306 [*eutA208::Tn10d(Tc)* *P_{int}*] was used to transduce *eut* mutation DEL733 (in strain TT11704) to *Tc^r*. DEL733 is a constructed deletion mutation extending from the *cysA* gene into the promoter-distal end of the *eut* operon; the deletion ends near the border between the *eutA* and *eutB* genes (Fig. 1) and has a *Mu dA* (*Ap^r Lac*) element marking the site of the deleted material (21). In this cross, 10 of 96 *Tc^r* transductants were *Ap^r*, indicating that recombination occurred between *eutA208::Tn10d(Tc)* and the endpoint of the *Ap^r*-marked deletion. All 10 *Ap^r* recombinants are Lac⁺, indicating that none of the 10 exchanges within the portion of the *eutA* gene distal to the *Tn10d(Tc)* insertion separated *Tc^r* from *P_{int}*. (These exchanges could also occur within the *lac* sequences shared by both the donor and recipient.)

P22 transducing phage lysates were prepared on two double mutants that carried both the *eutA::Tn10d(Tc)* *P_{int}* insertion and the *Ap^r*-marked DEL733 mutation (TT17307 and TT17308). This phage lysate was used to transduce a recipient strain containing fusion *eutR156::lac* (TT13738) to *Tc^r*. If the *P_{int}* mutation is located within the *Tn10d(Tc)* element or the region between this element and the region defined by

FIG. 3. Model for the distribution of Ado-B₁₂ between EutBC lyase and EutR regulatory protein.

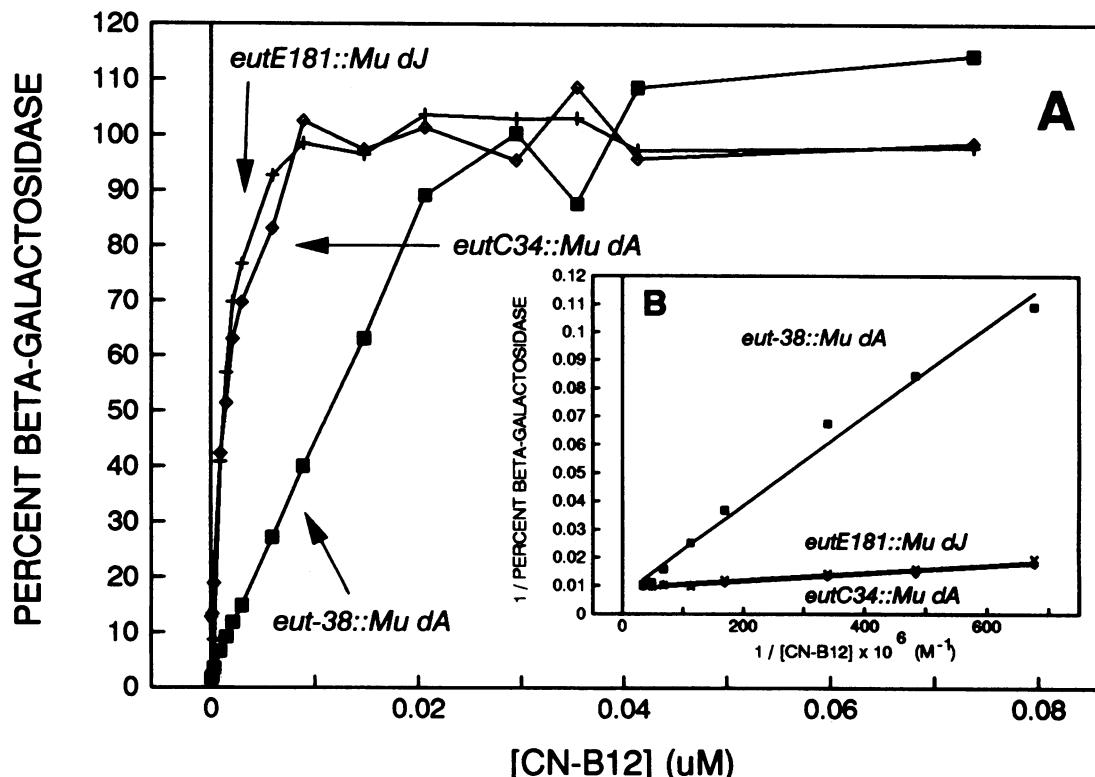


FIG. 4. Induction of the *eut* operon by exogenous CN-B₁₂: effect of *eut* insertion mutations on induction sensitivity. Cultures were grown and data were analyzed as described in the legend to Fig. 2. Induction of the *eut* operon was measured directly from the Mu dA *lac* or Mu dJ *lac* insertion mutation. The strains assayed were *eut*-38::Mu dA (TT10674), *eut*C34::Mu dA (TT10670), and *eut*E181::Mu dJ (TT13762).

beginning of DEL733, two Tc^r Ap^s *cysA*⁺ recombinant types are possible; recombinants that contain the *P_{int}* mutation will be Lac⁺, whereas those in which the *P_{int}* mutation has been separated from Tn10d(Tc) will be Lac⁻. None of 192 recombinant events occurring between *eut*A208::Tn10d(Tc) and the Mu dA element of DEL733 separated the *P_{int}* mutation from the Tn10d(Tc) element. This indicates that the *P_{int}* mutation is not located within DEL733 and is not easily separated from the Tn10d(Tc) element by recombination.

The Tn10d(Tc) element includes promoters for divergent genes that confer the Tc^r phenotype. These promoters direct

tetracycline-inducible transcripts that extend out of both sides of the transposable material into the chromosomal region adjoining the insertion site (26). The *P_{int}* mutation described here may cause constitutive expression of a promoter within the Tn10d(Tc) element. Further support for the positioning of the *P_{int}* mutation within Tn10d(Tc) will require sequence analysis and an analysis of *P_{int}* transcripts.

Effect of *P_{int}* on the phenotype of *eut*A208::Tn10d(Tc)-containing strains. *S. typhimurium* can use ethanolamine as both a carbon and nitrogen source when grown aerobically and provided with cobalamin. Strains defective in the *eut* operon

TABLE 3. Apparent *K_m* values and maximum *eut* operon induction by Ado-B₁₂: effect of *eut* insertion mutations

Strain	<i>lac</i> fusion	<i>K_m</i> (10 ⁹)	<i>K_m</i> relative to <i>eut</i> -38::Mu dA	eut operon induction (β -galactosidase) ^a		
				Uninduced	Fully induced	Fully induced relative to <i>eut</i> -38::Mu dA
TT10674	<i>eut</i> -38::Mu dA	23.3	1.00	4.9	305.8	1.0
TT10271	<i>eut</i> E181::Mu dJ	1.1	0.05	1.9	184.1	0.6
TT10642	<i>eut</i> D6::Mu dA	2.8	0.12	1.2	61.1	0.2
TT10647	<i>eut</i> D11::Mu dA	6.8	0.29	1.3	111.0	0.4
TT13762	<i>eut</i> E181::Mu dJ	1.6	0.07	1.6	145.1	0.5
TT13745	<i>eut</i> E163::Mu dJ	3.4	0.15	2.0	181.6	0.6
TT13754	<i>eut</i> A173::Mu dJ	1.7	0.07	1.7	118.0	0.4
TT10662	<i>eut</i> A26::Mu dA	1.7	0.07	2.9	151.4	0.5
TT10638	<i>eut</i> B2::Mu dA	2.1	0.09	4.2	44.2	0.1
TT10670	<i>eut</i> C34::Mu dA	1.4	0.06	4.2	32.9	0.1

^a Cultures were grown for analysis as described in Materials and Methods. Induction of the *eut* operon was measured directly from the *eut*::*lac* insertion mutation. Apparent *K_m* values for Ado-B₁₂ induction were determined from the value of the x-axis intercept of reciprocal plots: (1/percent maximal β -galactosidase) versus (1/CN-B₁₂) (Fig. 4). The fully induced levels of *eut* operon expression from different *eut*::*lac* insertion mutations varied considerably. This is a common characteristic of different Mu d *lac* insertion mutants and does not appear to have regulatory significance for the *eut* operon.

have been placed into two physiologically distinct groups. Strains lacking lyase activity (*eutBC*) are unable to use ethanamine as either nitrogen or carbon source ($N^- C^-$). Strains that have lyase but are unable to catabolize sufficient acetaldehyde (*eutD* and *eutE*) can use ethanolamine as a nitrogen but not as a carbon source ($N^+ C^-$). Nonpolar *eutA* mutants exhibit a $N^- C^-$ phenotype when given CN-B₁₂ as a cobalamin source, even though 40% of wild-type levels of lyase and 75% of wild-type levels of dehydrogenase activity can be detected in these strains in cell-free assays (22). These nonpolar *eutA* mutants are $N^+ C^-$ when Ado-B₁₂ is provided. It has been suggested that the *eutA* function may protect lyase from inhibition by excess CN-B₁₂ (22) or a toxic breakdown product of Ado-B₁₂ produced during the lyase enzymatic reaction.

Strains containing the polar *eutA208::Tn10d(Tc)* mutation exhibit the $N^- C^-$ phenotype (even with Ado-B₁₂) since the insertion prevents expression of the *eutB* and *eutC* (lyase) genes. The *P_{int}* mutation changes the phenotype of the *eutA* insertion mutant from $N^- C^-$ to $N^+ C^-$ in the presence of CN-B₁₂, suggesting that it restores lyase expression (*eutBC*). The *P_{int}* mutation causes an increase in the expression of both lyase and EutR regulatory protein and must lie upstream of both the *eutB* and *eutC* genes. This location of *P_{int}* is supported by the observation that strains TT17307 and TT17308 [*eutA::Tn10d(Tc) P_{int}* DEL733] show high constitutive expression of *lacZ* from the Mu dA fusion present at the deletion endpoint near the junction of the *eutA* and *eutB* genes (Fig. 1). This places *P_{int}* either within the *Tn10d(Tc)* element or within the *eutA* gene or immediately upstream of the *eutB* gene.

Effect of high levels of lyase and activator protein on *eut* operon induction. Three isogenic strains that produced different relative levels of lyase and regulatory protein were constructed. In each case, expression of the operon was monitored by the promoter-proximal *eutD18::lac* fusion. Strain TT17321 carries the original *eutA208::Tn10d(Tc)* polar insertion and produces no lyase but a low level of EutR regulatory protein. Strain TT17320 carries the *eutA208::Tn10d(Tc)* polar insertion with *P_{int}* and produces high levels of both lyase and EutR. Strain TT17298 carries the *eutA208::Tn10d(Tc)* polar insertion with *P_{int}* and the nonpolar lyase mutation *eutC110*; it produces no lyase but makes a high level of EutR. These three strains, TT17321, TT17320, and TT17298, were tested for their sensitivity to induction by CN-B₁₂. The results are shown in Fig. 5; K_m values are presented in the last six lines of Table 4.

Strain TT17298 (high EutR and no lyase) exhibits a higher absolute level of *eut* operon expression than does strain TT17321 (low EutR and no lyase) over the entire range of CN-B₁₂ concentrations tested (Fig. 5A). This demonstrates that in the absence of lyase increased EutR synthesis allows *eut* operon induction to be maintained at low levels of exogenous CN-B₁₂ (and presumably correspondingly low intracellular concentrations of Ado-B₁₂). The strain with a high EutR level also shows a higher maximal level of operon expression. This is expected, since under these conditions a greater degree of saturation of the main *eut* promoter (*eutP₁*) by the EutR-ethanolamine-Ado-B₁₂ complex should occur.

The competition between lyase and the EutR regulatory protein for Ado-B₁₂ is demonstrated by comparing the sensitivity of *eut* operon induction in strain TT17320 (high EutR and high lyase) with strain TT17298 (high EutR and no lyase). With high lyase production, more Ado-B₁₂ is required to induce *eutP₁*. When synthesis of functional lyase is blocked by the mutation *eutC110* (Fig. 5A) or by two different *eutB* point mutations (Table 4), the apparent K_m values for operon induction are decreased five- to 10-fold relative to those of the

eutBC⁺ strain TT17320 (see strains TT17296, TT17297, and TT17298 in Table 4).

The maximum level of operon expression is dictated by EutR protein level and is not affected by lyase levels. Isogenic strains harboring various *eut* mutations differed not only in their sensitivity to induction by low levels of exogenous CN-B₁₂ but also exhibited differences in the maximal induction levels achieved in the presence of excess CN-B₁₂. These differences correlate with the expression level of the *eutR* gene and not with the expression of *eutBC* lyase. For example, strains containing fusions located promoter-proximal to the *eutR* gene, such as *eutD18::lac*, exhibit a low level of *eutR* gene expression because of the weak internal promoter (*eutP_{II}*) and thus exhibit a low level of maximal *eut* operon expression (Table 4, strain TT10271). Presumably the main *eutP₁* promoter is only partially saturated by the EutR-ethanolamine-Ado-B₁₂ complex. When the *P_{int}* mutation is added to such a strain, the *eutD18::lac* fusion attains a much higher maximal level of induction (Table 4, strain TT17320). Presumably the higher level of expression of the *eutR* gene results in a greater saturation of *eutP₁* by the EutR-ethanolamine-Ado-B₁₂ complex. These high maximal levels of *eut* operon induction (seen with excess Ado-B₁₂) are not altered by the introduction of nonpolar lyase point mutations in *eutB* and *eutC* (Table 4, strains TT17296, TT17297, and TT17298). Similar results are obtained when *eut* operon induction is measured from the *eut-38::lac* fusion at the distal end of the operon (Table 4, strains TT14492, TT17302, TT17303, TT17305, and TT17304).

DISCUSSION

The *eut* operon in *S. typhimurium* requires ethanolamine, the substrate of this degradative pathway, and Ado-B₁₂, the cofactor for the first enzyme in the pathway (lyase) as effectors for induction. Induction is mediated by the EutR activator protein (21–23). The *eutR* gene is positioned within the operon at the distal end of the cotransduced region (Fig. 1). Transcription initiated at the regulated main promoter (*eutP₁*) extends through the *eutR* gene. Thus synthesis of EutR protein increases with the expression of other genes in the operon. This autoinduction of EutR protein is necessary to provide levels of the EutR-ethanolamine-Ado-B₁₂ complex sufficient to achieve maximal induction of the operon from the *eutP₁* promoter and to successfully compete with newly synthesized EutBC lyase for available Ado-B₁₂ (Fig. 3).

To understand the physiological significance of the autoinduction of EutR protein, we examined the sensitivity of the *eut* operon to induction by the effector CN-B₁₂, a precursor of the Ado-B₁₂ effector (presented with excess ethanolamine). Strains that contained different combinations of *eut::lac* fusions and point mutations were tested. The apparent K_m values for *eut* operon induction by exogenous CN-B₁₂ varied over a 10-fold range. Low apparent K_m values were exhibited in strains with *eut::lac* fusions within or upstream of the *eutBC* lyase genes (sensitive strains). Fusions that did not disrupt any *eut* gene exhibited a relatively high apparent K_m value for operon induction (insensitive strains). This high K_m value was reduced by point mutations that eliminate synthesis of lyase. Point mutations in genes other than the *eutBC* lyase genes had little effect on the sensitivity of induction of a distal operon fusion, and the slight effects seen probably result from polarity effects of those point mutations on expression of the *eutBC* gene. The strongly polar Mu d *lac* fusion mutations in these same *eut* genes are uniform in their reduction of the apparent K_m value for operon induction; we attribute this to low expression of the lyase. Two exceptional *eutC* lyase mutations,

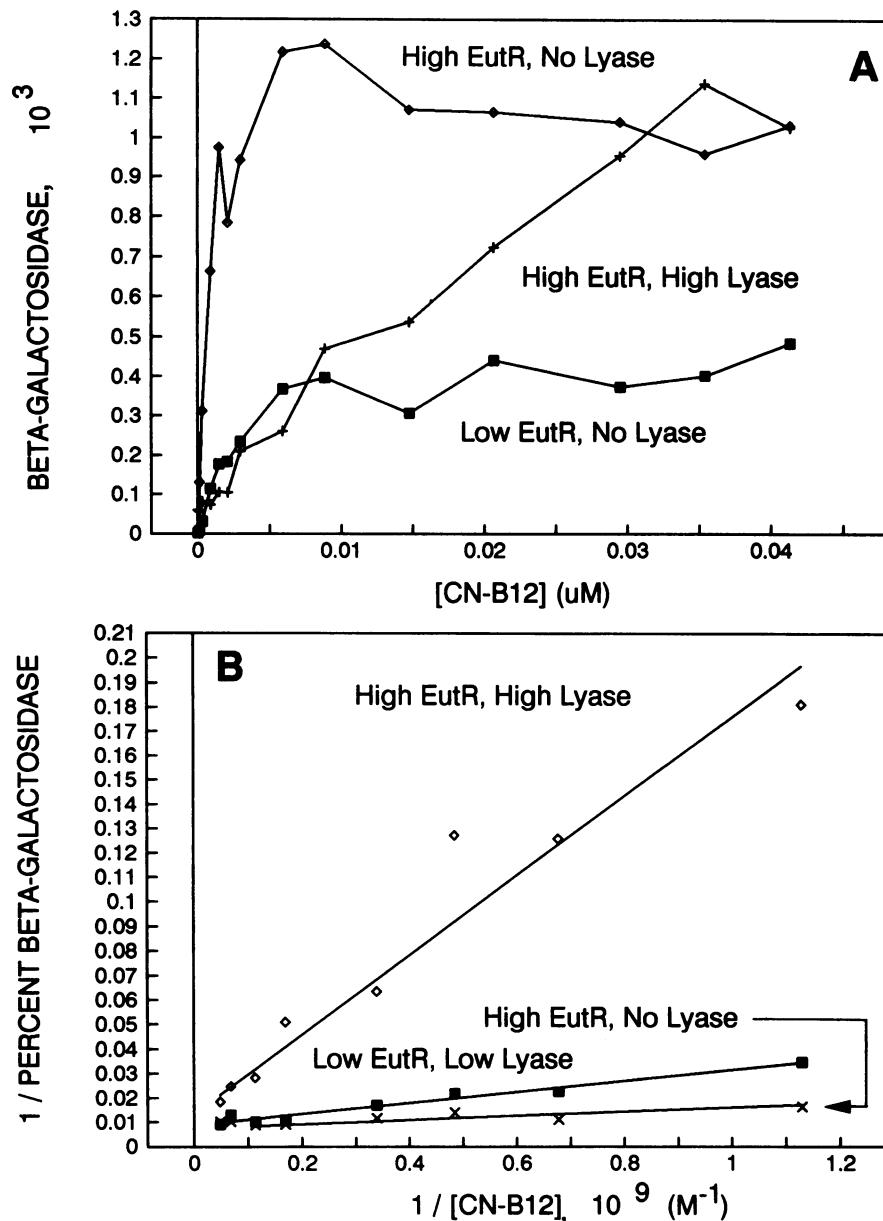


FIG. 5. Induction of the *eut* operon by exogenous CN-B₁₂: effect of high levels of lyase (*eutB* and *eutC*) and activator protein (*eutR*) on induction sensitivity. Cultures were grown and data were analyzed as described in the legend to Fig. 2, except that for panel A β -galactosidase activity was expressed in absolute units rather than as a percentage of the maximum expressed levels so that absolute levels of *eut* operon induction can be compared. The strains assayed were TT17298 (High EutR, No Lyase), TT17320 (High EutR, High Lyase), and TT17321 (Low EutR, No Lyase). (A) actual data; (B) double reciprocal plots of the data.

both nonpolar point mutations, failed to improve the sensitivity of induction. One of these is a leaky mutation. We think such mutations are expected and can be explained as missense mutants which produce lyase with impaired catalytic activity but normal ability to bind to Ado-B₁₂. If the mutations do not eliminate protein capable of binding Ado-B₁₂, they are not expected to improve induction sensitivity. Since impaired catalytic activity alone does not increase sensitivity to induction, it seems likely that this regulatory effect is due to binding of Ado-B₁₂ by lyase protein rather than depletion of the inducer ethanolamine by lyase enzymatic activity. In summary, strains that are sensitive to induction have reduced levels of lyase synthesis. We interpret this to mean that lyase competes

with the EutR regulatory protein for Ado-B₁₂. Eliminating lyase allows all available Ado-B₁₂ to serve as an effector for *eut* operon induction.

The autoinduction model for EutR synthesis predicts that the absolute level of *eut* operon induction should be controlled by the level of EutR protein available to the main promoter (*eutP₁*). To test this prediction, a mutant was selected with high constitutive expression of both the *eutBC* lyase and *eutR* regulatory protein genes. An internal promoter mutation located just upstream of the *eutB* gene is responsible for this expression. This made it possible to measure the absolute expression from *eutP₁* at both a low and high constitutive rate of expression of *eutR*, with and without competition by lyase.

TABLE 4. Apparent K_m and maximum *eut* operon induction by Adc-B12: effect of high and low rates of expression of EutB,C (lase) and EutR (operon activator protein)

Strain	Genotype ^a						<i>eut</i> operon induction (β -galactosidase) ^c					
	<i>eutD</i>	<i>eutA</i>	P_{int}	<i>eutB</i>	<i>eut</i>	<i>eutR</i>	<i>eut</i> -38	K_m (10^9) ^b	K_m relative to <i>eut</i> -38:Mu dA	Uninduced	Fully induced	Fully induced relative to <i>eut</i> -38:Mu dA
TT1378								1.6	2.1	0.0	—	—
TT1299								4.3	<1	—	—	—
TT17300								4.3	904.2	0.6	0.6	0.6
TT10674								4.5	196.8	1.0	1.0	1.0
TT14492								9.9	9.0	0.0	0.0	0.0
TT17302								361.3	318.0	1.6	1.6	1.6
TT17303								386.5	291.6	1.5	1.5	1.5
TT17305								354.8	277.2	1.4	1.4	1.4
TT17304								203.7	163.9	0.8	0.8	0.8
TT10674								23.3	1.00	1.9	305.8 ^d	1.0
TT10271	<i>eutD18::Mu dJ</i>							1.1	0.05	1.9	184.1 ^d	0.6
TT17321	<i>eutD18::Mu dJ</i>							2.6	0.11	1.9	398.4 ^d	1.3
TT17320	<i>eutD18::Mu dJ</i>							12.2	0.52	59.0	1325.7 ^d	4.3
TT17296	<i>eutD18::Mu dJ</i>							2.3	0.10	32.2	1424.9 ^d	4.7
TT17297	<i>eutD18::Mu dJ</i>							1.0	0.04	29.3	1413.8 ^d	4.6
TT17298	<i>eutD18::Mu dJ</i>							1.2	0.05	10.7	1083.7 ^d	3.5

^a Mutations present in each strain are presented in map order (Fig. 1) and are aligned vertically for each of comparison. No entry indicates that the particular genetic region is wild type.^b Apparent K_m values were determined as described in Materials and Methods.^c All cultures were grown for analysis as described in Materials and Methods. Operon induction was measured from *eut::lac* fusions located at different positions within the operon.^d These are the average of several values obtained from cultures grown with excess CN-B₁₂.

Measurement of *eutP₁* expression in otherwise isogenic strains demonstrates that an increase in *eutR* expression causes an increase in the maximal level of *eutP₁* induction.

An autoinduced regulatory gene, such as seen for the *eut* operon, has several properties that appear to be valuable. Uninduced cells need only produce a low basal level of activator regulatory protein sufficient to start the process of induction. Since little or no lyase is present before induction, the initial phase of induction should be extremely sensitive to Ado-B₁₂. Once operon induction starts and the level of lyase increases, a competition will develop between the EutR protein, which requires Ado-B₁₂ as an effector for induction, and lyase, which requires Ado-B₁₂ as a cofactor for enzymatic activity. At low levels of Ado-B₁₂, full induction will fail since lyase will sequester the inducer. By increasing the level of EutR regulatory protein in parallel with lyase, the cell can partition available Ado-B₁₂ between the enzyme and the available protein. This permits the EutR protein to continue to sense the Ado-B₁₂ level even when a high level of lyase competes for Ado-B₁₂ binding. While autoinduction of *eutR* is important in maintaining an effective distribution of Ado-B₁₂ between EutR regulatory protein and lyase, differences in the binding constants of these two proteins may also contribute to the balance between *eut* operon induction and ethanolamine degradation. In the absence of separate regulatable promoters for *eutBC* and *eutR*, it is not possible to determine whether the condition of high levels of EutBC lyase with low levels of EutR regulatory protein results in less-efficient induction. This premise will be tested when these constructs become available.

ACKNOWLEDGMENTS

D.E.S. thanks John Roth for the opportunity to pursue this work in his laboratory. We thank Michael Ailion, Nicholas Benson, Thomas Bobik, Kenneth Haack, and Jeffrey Lawrence for critical review of the manuscript and Thomas Doak for helpful discussions during the course of the work.

This work was supported by Public Health Service grant GM34804 from the National Institutes of Health to J.R.R.

REFERENCES

1. Andersson, D. I., and J. R. Roth. 1989. Mutations affecting regulation of cobinamide biosynthesis in *Salmonella typhimurium*. *J. Bacteriol.* **171**:6726-6733.
2. Andersson, D. I., and J. R. Roth. 1989. Redox regulation of the genes for cobinamide biosynthesis in *Salmonella typhimurium*. *J. Bacteriol.* **171**:6734-6739.
3. Bassford, P. J., Jr., and R. J. Kadner. 1977. Genetic analysis of components involved in vitamin B₁₂ uptake in *Escherichia coli*. *J. Bacteriol.* **132**:796-805.
4. Blackwell, C. M., F. A. Scarlett, and J. M. Turner. 1977. Microbial metabolism of amino alcohols: control of formation and stability of partially purified ethanolamine ammonia-lyase in *Escherichia coli*. *J. Gen. Microbiol.* **98**:133-139.
5. Blackwell, C. M., and J. M. Turner. 1978. Microbial metabolism of amino alcohols. Formation of coenzyme B₁₂-dependent ethanolamine ammonia-lyase and its concerted induction in *Escherichia coli*. *Biochem. J.* **176**:751-757.
6. Blackwell, C. M., and J. M. Turner. 1978. Microbial metabolism of amino alcohols. Purification and properties of coenzyme B₁₂-dependent ethanolamine ammonia-lyase of *Escherichia coli*. *Biochem. J.* **175**:555-563.
7. Bradbeer, C. 1965. The clostridial fermentations of choline and ethanolamine. II. Requirement for a cobamide coenzyme by an ethanolamine deaminase. *J. Biol. Chem.* **240**:4675-4681.
8. Casadaban, M. J., and S. N. Cohen. 1979. Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: an *in vivo* probe for transcriptional control sequences. *Proc. Natl. Acad. Sci. USA* **76**:4530-4533.
9. Castilho, B. A., P. Olfson, and M. J. Casadaban. 1984. Plasmid insertion mutagenesis and *lac* gene fusion with mini-Mu bacteriophage transposons. *J. Bacteriol.* **158**:488-495.
10. Chan, R. K., D. Botstein, T. Watanabe, and Y. Ogata. 1972. Specialized transduction of tetracycline resistance by phage P22 in *Salmonella typhimurium*. II. Properties of a high-frequency-transducing lysate. *Virology* **50**:883-898.
11. Chang, G. W., and J. T. Chang. 1975. Evidence for the B₁₂-dependent enzyme ethanolamine deaminase in *Salmonella*. *Nature (London)* **254**:150-151.
12. Davis, R. W., D. Botstein, and J. R. Roth. 1980. Advanced bacterial genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
13. Escalante-Semerena, J. C., S.-J. Suh, and J. R. Roth. 1990. *cobA* function is required for both de novo cobalamin biosynthesis and assimilation of exogenous corrinoids in *Salmonella typhimurium*. *J. Bacteriol.* **172**:273-280.
14. Hughes, K. T., and J. R. Roth. 1984. Conditionally transposition-defective derivative of Mu d1(Amp Lac). *J. Bacteriol.* **159**:130-137.
15. Jeter, R., J. C. Escalante-Semerena, D. Roof, B. Olivera, and J. R. Roth. 1987. Synthesis and use of vitamin B₁₂, p. 551-556. In F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter, and H. E. Umbarger (ed.), *Escherichia coli and Salmonella typhimurium: cellular and molecular biology*, vol. 1. American Society for Microbiology, Washington, D.C.
16. Jeter, R. M., B. M. Olivera, and J. R. Roth. 1984. *Salmonella typhimurium* synthesizes cobalamin (vitamin B₁₂) de novo under anaerobic growth conditions. *J. Bacteriol.* **159**:206-213.
17. Jones, P. W., and J. M. Turner. 1984. Interrelationships between the enzymes of ethanolamine metabolism in *Escherichia coli*. *J. Gen. Microbiol.* **130**:299-308.
18. Jones, P. W., and J. M. Turner. 1984. A model for the common control of enzymes of ethanolamine catabolism in *Escherichia coli*. *J. Gen. Microbiol.* **130**:849-860.
19. Miller, J. H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
20. Ratzkin, B., and J. R. Roth. 1978. Cluster of genes controlling proline degradation in *Salmonella typhimurium*. *J. Bacteriol.* **133**:744-754.
21. Roof, D. M., and J. R. Roth. 1988. Ethanolamine utilization in *Salmonella typhimurium*. *J. Bacteriol.* **170**:3855-3863.
22. Roof, D. M., and J. R. Roth. 1989. Functions required for vitamin B₁₂-dependent ethanolamine utilization in *Salmonella typhimurium*. *J. Bacteriol.* **171**:3316-3323.
23. Roof, D. M., and J. R. Roth. 1992. Autogenous regulation of ethanolamine utilization by a transcriptional activator of the *eut* operon in *Salmonella typhimurium*. *J. Bacteriol.* **174**:6634-6643.
24. Scarlett, F. A., and J. M. Turner. 1976. Microbial metabolism of amino alcohols: ethanolamine catabolism mediated by coenzyme B₁₂-dependent ethanolamine ammonia-lyase in *Escherichia coli* and *Klebsiella aerogenes*. *J. Gen. Microbiol.* **95**:173-176.
25. Schmieger, H. 1971. A method for detection of phage mutants with altered transducing ability. *Mol. Gen. Genet.* **110**:378-381.
26. Takiff, H. E., T. Baker, T. Copeland, S.-M. Chen, and D. L. Court. 1992. Locating essential *Escherichia coli* genes by using Mini-Tn10 transposons: the *pdxJ* operon. *J. Bacteriol.* **174**:1544-1553.
27. Way, J. C., M. A. Davis, D. Morisato, D. E. Roberts, and N. Kleckner. 1984. New Tn10 derivatives for transposon mutagenesis and for construction of *lacZ* operon fusions by transposition. *Gene* **32**:369-379.