Regulation of histidine operon does not require hisG enzyme

(*hisG* deletions/repression control/relief of polarity)

JOHN F. SCOTT^{*†}, JOHN R. ROTH^{*}, AND STANLEY W. ARTZ^{‡*}

* Department of Molecular Biology and [‡]Biochemistry Department, University of California, Berkeley, Calif. 94720

Communicated by Bruce N. Ames, August 8, 1975

ABSTRACT Mutations are described which delete all or part of the first structural gene (hisG) of the histidine operon of Salmonella typhimurium. Physiological regulation of histidine enzymes occurs normally in strains carrying any deletion that has both endpoints within the hisG gene. Constitutive high operon expression is observed in strains carrying any hisG deletion and an unlinked regulatory mutation, hisT1504. These results strongly indicate that the hisG protein is not an essential component of the mechanism for regulating expression of the histidine operon.

The biosynthesis of histidine in Salmonella typhimurium requires ten enzymes. The structural genes for these enzymes are located in a cluster of coordinately regulated genes (1, 2)called the histidine operon. Six classes of regulatory mutations have been identified which cause constitutive high level expression of the operon. These are hisR, hisS, hisT, hisU, hisW, and hisO. Characteristics of each of the classes are described in recent review articles (3, 4). None of these classes has been demonstrated to alter any protein that serves directly as a repressor or activator protein. Several lines of evidence have suggested that the hisG enzyme ATP phosphoribosyltransferase [N-1-(5'-phosphoribosyl)] ATP: pyrophosphate phosphoribosyltransferase, EC 2.4.2.17] might be the missing regulatory element (5-11). This protein is the first enzyme in the biosynthetic pathway and is encoded by the first structural gene in the operon.

In the work reported here, mutants lacking all or part of the *hisG* gene have been selected as less polar derivatives of *hisG* frameshift mutations. The general method is similar to that used previously by Jackson and Yanofsky (12). These *hisG* deletions were mapped at high resolution with known point and deletion mutations. Regulation of the *his* operon was then studied in strains containing *hisG* deletions. This paper describes the isolation and mapping of the deletions and the results of studies of their regulatory properties.

MATERIALS AND METHODS

Bacterial Strains. Genotypes and sources of *S. typhimu*rium strains are listed in Table 1. The strongly polar point mutations hisG6608 and hisG6609 were isolated by selection for temperature resistance of a strain containing the his01242 constitutive regulatory mutation (13). Mutations hisG6608 and hisG6609 were separated from the his01242 mutation by transduction. Strains containing the numerous his mutations used in localizing endpoints of hisG deletions (Fig. 2) were obtained from P. E. Hartman and B. N. Ames.

Growth Media. Difco nutrient broth was used as the maximally supplemented liquid medium, with 2 g of agar per 100 ml added for solid medium. The E medium of

Vogel and Bonner (14) was used, with 0.2 g of glucose per 100 ml added, as minimal liquid salts medium. Solid minimal salts medium contained 2 g of glucose per 100 ml to permit observation of wrinkled colony morphology (15, 16). Amino acids, when used, were added at a concentration of 50 μ g/ml unless otherwise noted. L-Histidinol was added at a concentration of 125 μ g/ml.

Transduction Procedures. Growth of phage followed the method of G. Roberts in this lab, modified by the use of enriched nutrient broth (17). To a 1 ml overnight culture of bacteria in nutrient broth was added 5 ml of enriched nutri-

Table 1. Bacterial strains*

Strain	Genotype	Source
TA81	his01242 hisG6608	Joyce McCann
TA253	his ⁺ dhuA ⁺ hisT1504	Bruce Ames
TA 471	his $∇2253$ dhu A^+ his $T1504$	Bruce Ames
TA1690) his $\nabla 2253$ dhuA1 hisT ⁺	Larry Kier
TA2327	his01242 hisG6609	Joyce McCann
TR3129) hisO ⁺ hisG6608	Tadahiko Kohno
TR3133	3 hisO ⁺ hisG6609	Tadahiko Kohno
		Episome transfer into
TR3308	hisG6609/F' hisB2405	TR3133
TR3309	hisG6608/F' hisB2405	TR3129
		AT-resistant mutant
TR3310	his⊽8473/F' hisB2405	TR3308
TR3313	his⊽8475/F' hisB2405	TR3308
TR3314	his⊽8476/F' hisB2405	TR3309
TR3315	his⊽8474/F' hisB2405	TR3308
TR3317	his⊽8477/F' hisB2405	TR3309
		Transduction into
TR3335	his⊽8473 dhuA1	TA1690
TR3336	his⊽8473 hisT1504	TA471
TR3339	his⊽8475 dhuA 1	TA1690
TR3340	his⊽8475 his T1504	TA471
TR3343	his⊽8476 dhuA1	TA1690
TR3344	his⊽8476 hisT1504	TA471
TR3347	his⊽8474 dhuA1	TA1690
TR3348	his⊽8474 hisT1504	TA471
TR3351	his⊽8477 dhuA1	TA1690
TR3352	his⊽8477 hisT1504	TA471
TR3355	hisC483 dhuA1	TA1690
TR3356	hisC483 hisT1504	TA471
TR3359	hisC537 dhuA1	TA1690
TR3360	hisC537 hisT1504	TA471
TR3502	hisG6609 hisT1504	TA471
TR3504	hisG6608 hisT1504	TA471
TR3505	his+	LT-2

^{*} All strains are derived from S. typhimurium LT2. Mutation his-2253 deletes hisO, G, D, C, B, and part of the hisH gene. The dhuAl mutation facilitated strain construction and is not pertinent to studies of regulation of his biosynthetic enzymes.

Abbreviations: *HT* phage, high-frequency transducing phage; AT, 3-amino-1,2,4-triazole.

[†] Present address: Department of Biochemistry, Stanford University School of Medicine, Stanford, Calif. 94305.

FIG. 1. Genetic structure of strains used in isolation of hisG deletions.

ent broth containing 10^8 plaque-forming units/ml of the appropriate phage. The culture was incubated overnight, cells and debris removed by low-speed centrifugation, and the supernatant was decanted into a fresh tube and sterilized by shaking with a few drops of chloroform. The chloroformed phage stock was allowed to stand at room temperature overnight, and then stored at 4° . A titer of $10^{10}-10^{11}$ plaque-forming units/ml was usually obtained by this method with the phage types listed below.

Phage types used for strain construction were P22 (*int-4*) or P22 (HT *int⁻*), a derivative of P22 (HT) (ref. 18; obtained from B. A. D. Stocker) into which an *int* mutation was introduced by G. Roberts in this lab. Phage types used for transduction mapping were P22 (HT), or P22 (HT *int⁻*). Prior to use, HT phage were grown for at least one cycle on a host that carried mutation *his-3050* which deletes the entire *his* operon. This assured that no transductants arose in mapping crosses due to carry-over of *his⁺* material from the previous host.

Initial screening for hisG deletions was done by spreading 0.2 ml of an overnight nutrient broth culture of recipient cells on minimal glucose + 0.005 mM histidine plate, and delivering 25 small drops of donor phage suspensions on the plate. The final verification of hisG deletion endpoints was obtained by spreading 0.1 ml of the hisG deletion mutant as recipient plus 0.1 ml of the appropriate donor phage lysate $(10^{10}-10^{11} \text{ plaque-forming units/ml})$ together on a series of plates containing minimal glucose + 0.005 mM histidine. Crosses finally scored as negative gave no recombinants in tests that would have elicited greater than 100,000 recombinants with a wild type donor. Strains built by transduction were single colony isolated selectively and were shown to be free of phage (19).

Enzyme Assays. Toluenized whole cell assays have been described for the hisB enzyme histidinolphosphate phosphatase (L-histidinol-phosphate phosphohydrolase, EC 3.1.3.15) (20), and the hisD enzyme histidinol dehydrogenase (L-histidinol: NAD⁺ oxidoreductase, EC 1.1.1.23) (21). Growth media for repressing and derepressing conditions contained E salts + glucose (0.2 g/100 ml) and either 0.1 mM histidine or 1.0 mM histidinol, respectively. Cells were grown to mid-log phase in 50 or 100 ml cultures on a rotary shaker at 37°, collected by centrifugation, washed three times, and then resuspended in the buffer appropriate for the assay to be done. Optical density (650 nm) of the washed cell suspension was used to calculate enzyme specific activities.

RESULTS

Rationale

Much of the *in vivo* evidence that has been used to implicate the product of the first structural gene (hisG) of the *his* op-

eron of S. *typhimurium* as a predominant element in regulating expression of this operon has been indirect. To clarify this situation we have isolated a series of deletion mutants which lack extensive regions of the *hisG* gene. With these deletion mutants it is possible to assess the *in vivo* regulatory function of the *hisG* enzyme in a straight-forward manner.

Isolation of *hisG* deletion mutants

Mutants lacking large regions of the hisG gene were selected as less polar derivatives of the strongly polar frameshift mutants hisG6608 or hisG6609. The genetic structure of parental strains (TR3308 and TR3309) used in the selection is shown in Fig. 1. These strains carry, in addition to one of the polar hisG mutations, the F'hisB2405 episome of Escherichia coli origin which does not recombine detectably with the chromosomal his region presumably because of the lack of base sequence homology (22). Although the parental strains are phenotypically His⁺, they contain reduced levels of hisB enzyme because of the episomal hisB mutation, and the polar effect of the hisG mutations on chromosomal hisB expression. As a consequence of the reduction in hisB enzyme these strains are abnormally sensitive to growth inhibition by 3-amino-1,2,4-triazole (AT), a compound that inhibits hisB enzyme activity (23). Among several mechanisms by which AT-sensitivity can be overcome is deletion of the hisG polar mutation. The presence of an intact hisG gene on the episome enables such deletion mutants to remain phenotypically His+.

The selection was carried out by spreading 0.1 ml portions of overnight cultures of one of the parental strains (inoculated from individual colonies to assure independent isolates) on minimal medium plates containing glucose (2 g/100 ml), AT (15 mM), adenine (0.5 mM), and thiamine (0.05 mM). (Adenine relieves a block in purine biosynthesis produced by AT, and thiamine relieves the adenine sensitivity of S. typhimurium strains derepressed for the his operon.) AT-resistant clones appearing after 2 days' incubation at 37° were picked, purified, and phage lysates were prepared for preliminary identification of hisG deletions. AT-resistant strains whose phage lysates failed to elicit recombinants with several recipients containing different hisG point mutations were saved as potential hisG deletion mutants. Approximately 10% of the mutants surviving the selection proved to contain deletions of the general type desired. Each hisG deletion was transduced into a haploid recipient carrying deletion his-63 selecting for growth on histidinol. The transductant clones, which by necessity inherited the hisG deletion, were used in transductional mapping crosses as described under Materials and Methods.

A map of the hisG gene showing endpoints of five representative deletions isolated and characterized by these methods is given in Fig. 2. The set of mutations used in mapping

FIG. 2. Map positions of hisG deletion mutations. This map is based on phage P22-mediated transductional crosses. Derepression ratios (DR) for strains containing deletion mutations his-8473-his-8477, taken from Table 2, are based on assay of the hisB enzyme. Deletion mutation his-8475 removes a part of the hisO control region and elicits high constitutive levels of histidine enzymes (DR = 0.9).

includes the most promoter-proximal and most promoterdistal point mutations known in *hisG*. The order of *hisG* point mutations has been revised somewhat based on data obtained in this study.

Regulation of the *his* operon in strains containing *hisG* deletions

Data in Tables 2 and 3 indicate that hisG enzyme is unnecessary for repression or derepression of the his operon. This conclusion is derived from analysis of physiological regulation (Table 2), and genetic derepression as a consequence of the hisT1504 (24) regulatory mutation (Table 3), in strains containing the hisG deletions shown in Fig. 2.

Strains containing hisG deletions that do not extend into the hisO control region (Fig. 2) maintain repressed levels of his enzymes when grown in minimal media containing excess histidine, and derepress normally when histidine is limited by growth on the histidine intermediate, histidinol (Table 2). With strains containing such internal hisG dele-

tions (his-8473, -8474, -8476, and -8477), derepression ratios are in the range 11-16 and 8-19 for the hisD and hisB enzymes, respectively. These values compare with those of 8-9 for hisD enzyme and 13-15 for hisB enzyme, obtained with the hisG+ control strains (hisC483 and hisC537). Strain LT2, used to standardize the repressed level of his enzymes $(\equiv 1.0)$, does not contain a *his* mutation and thus does not derepress when grown in the presence of histidinol. Deletion his-8473 results in reduced levels of hisD enzyme activity possibly because of loss of a short segment of the hisD gene. Deletion his-8475 elicits high constitutive levels of hisD and hisB enzymes. Altered regulation caused by his-8475 is entirely consistent with a defect in the adjacent his O control region, since this deletion fails to recombine with the constitutive regulatory mutation hisO1242 and therefore extends through hisG into the hisO region (Fig. 2).

The *hisG* enzyme is not necessary to mediate genetic derepression caused by the *hisT* regulatory mutation (Table 3). Strains containing an internal *hisG* deletion and the regula-

Table 2. Physiological regulation of the histidine operon in hisG deletion mutants

Strain	Relevant genotype	Growth* medium	Doub- ling time (min)	<i>hisD</i> enzyme		hisB enzyme	
				Relative specific activity	De- repression ratio	Relative specific activity	De- repression ratio
TR3505	LT2(his ⁺)	his	65	=1.00	_	≡1.00	_
		hol	65	1.70	1.7	1.49	1.5
TR3355	hisC483	his	63	1.20	-	1.21	_
		hol	120	10.0	8.3	15.7	13
TR3359	hisC537	his	65	1.30		1.21	
		hol	120	11.0	8.5	17.6	15
TR3335	his⊽8473	his	58	0.13	_	0.71	
		hol	76	2.10	16	5.76	8.1
TR3347	his⊽8474	his	55	1.00	—	0.72	_
		hol	75	14.0	14	13.6	19
TR3343	his⊽8476	his	60	0.90	—	0.92	
		hol	73	10.0	11	10.5	11
TR3351	his⊽8477	his	65	0.60		0.70	_
		hol	75	7.10	12	10.9	16
TR3339	his⊽8475	his	58	8.00	—	10.9	—
		hol	75	11.0	1.4	9.81	0.9
TR3133	hisG6609	his	65	≤0.02	-	0.07	
		hol	75	0.60	≥30	0.76	11
TR3129	hisG6608	his	63	≤0.02		0.15	
		hol	76	0.60	≥30	1.04	6.9

* Cells were grown for maximal repression on medium containing 0.1 mM histidine (his). For derepression, cells were grown on medium containing the growth-limiting histidine intermediate histidinol (hol) at a concentration of 1.0 mM.

		Doubling time (min)	hisD enzyme		hisB enzyme	
Strain	Relevant genotype		Relative specific activity	Derepression ratio	Relative specific activity	Derepression ratio
TR3505	LT2 (his ⁺)	48	≡1.00		≡1.00	
TA253	his ⁺ hisT1504	60	19.8	20	12.3	12
TR3355	hisC483	55	0.92		1.18	
TR3356	hisC483 hisT1504	60	13.1	14	11.4	9.7
TR3359	hisC537	54	1.04	—	1.01	
TR3360	hisC537 hisT1504	60	14.6	14	11.7	12
TR3335	his ⊽ 8473	50	0.14	-	0.79	—
TR3336	his ⊽ 8473 hisT1504	60	1.34	9.6	4.82	6.1
TR3347	his ∀ 8474	42	1.12	_	0.72	
TR3348	his⊽8474 hisT1504	55	16.0	14	7.62	11
TR3343	his ⊽ 8476	53	0.88	·	1.22	
TR3344	his ⊽ 8476 hisT1504	60	7.61	8.6	10.1	8.3
TR3351	his ∀847 7	52	0.49	_	0.71	_
TR3352	his ⊽ 8477 hisT1504	60	7.78	16	9.54	13
TR3339	his ∀ 8475	52	6.46	-	5.75	
TR3340	his⊽8475 hisT1504	58	6.45	1.0	9.23	1.6
TR3133	hisG6609	63	≤0.02	_	0.24	
TR3502	hisG6609~hisT1504	65	0.34	≥16	0.63	2.6
TR3129	hisG6608	65	≤0.02		0.22	—
TR3504	hisG6608 hisŢ1504	65	0.40	≥20	0.59	2.7

Table 3. Derepression of hisG deletion mutants by the hisT1504 mutation*

* All strains were grown in minimal medium containing 0.1 mM L-histidine.

tory mutation his T1504 exhibit derepression ratios comparable to those of $hisG^+$ hisT1504 strains. Again, deletion his-8473 results in reduced activity of hisD enzyme, and deletion his-8475, which extends into the hisO region, elicits constitutively high his enzyme levels regardless of the presence or absence of the hisT mutation.

Results are also presented in Tables 2 and 3 for strains containing the polar mutations (hisG6608 and hisG6609) used for selection of hisG deletions. These data demonstrate the strong polarity effects of these mutations, as well as the ability of strains carrying chain-terminating hisG mutations to derepress both physiologically (Table 2) and in a hisT1504 background (Table 3). These effects are most clearly observed by measurement of hisD enzyme activity. Polar effects on hisB expression are less extreme due to the existence of a low level constitutive promoter between the hisC and hisB genes (21).

In addition to the deletion mutations described in this paper, 19 other deletions with endpoints within the hisG gene have been analyzed. Strains containing any of these mutations exhibit normal control of the his operon by criteria similar to those used above. By a slightly different isolation procedure, we have also obtained strains containing deletions which extend through the hisG gene into the hisD and hisC genes. These strains exhibit normal regulation as well, indicating that no essential regulatory element is encoded in the distal end of the hisG gene, or between the hisG and hisD genes.

DISCUSSION

Although physiological (5-7) and biochemical (8-10) data have accumulated suggesting involvement of the *hisG* gene product in regulation of the *his* operon of *S. typhimurium*, evidence presented in this paper clearly demonstrates that this protein cannot be an obligatory repressor or activator in the regulatory process. Physiological regulation of the *his* operon in strains carrying extensive deletions of the *hisG* gene occurs in a manner essentially identical to that observed in $hisG^+$ strains. The finding that the *hisT1504* regulatory mutation elicits expected constitutive derepression of *his* enzymes in strains containing *hisG* deletions further implies that the *hisG* product is not necessary to mediate effects of the well-established co-regulator of *his* operon expression—His-tRNA^{His} (3). Mutations in *hisT* lead to constitutively derepressed synthesis of *his* enzymes by inactivating an enzyme that converts uridine to pseudouridine (Ψ) in the anticodon loop of tRNA^{His} (25). The Ψ modification is necessary for normal regulatory function of tRNA^{His}, as well as other tRNA species (26).

We think it highly unlikely that all the *hisG* deletions we have characterized would leave intact a promoter proximal portion of the *hisG* gene that codes for a protein fragment essential in the regulation. Several *hisG* deletions (Fig. 2) fail to recombine with *hisG2101*, the *hisG* point mutation most proximal to the adjacent *hisO* regulatory region. Since *hisG2101* itself recombines very infrequently with nearby mutations in the *hisO* region, this implies that *hisG* deletions can end extremely near the *hisO-hisG* border without causing regulatory alterations.

If hisG enzyme does participate in regulating expression of the his operon its function must be a dispensable one. For example, if two independent regulatory mechanisms exist, only one of which involves hisG enzyme, then the deletions described here would leave the second mechanism intact. Artz and Broach (27) have recently described an "activatorattenuator" model of his operon regulation which can accommodate an accessory function of hisG enzyme. Such an accessory function is not inconsistent with our studies, and the specific mechanism suggested (27) can account for *in vitro* biochemical evidence that has implicated hisG enzyme in the regulation.

However, it is difficult to reconcile our evidence obtained with *hisG* deletion mutants and *all* of the data that have been used to implicate this protein in the regulation. One example of such an anomaly is the report that some function of the *hisG* protein is necessary to mediate repression by the histidine analog 1,2,4-triazole-3-alanine (6, 7). We have examined this phenomenon with several strains containing different *hisG* deletions (unpublished experiments); in each case the *his* operon was repressible by the analog, as well as by histidine.

We believe that our results clearly indicate that hisG enzyme is not essential for regulation of the his operon in S. typhimurium. Similar evidence has ruled out mandatory participation of the first enzymes of the tryptophan (12, 28) and isoleucine (29) pathways in regulation of the E. coli trp and *ilv* operons, respectively.

The authors are grateful to Ingrid Hoppe for excellent assistance with deletion mapping. This work was supported by National Institutes of Health Research Grants GM 18633 to J.R. and GM 19993 to B.A., in whose laboratory part of this work was done. S.W.A. was a recipient of postdoctoral fellowships from the American Cancer Society and the California Division of the American Cancer Society.

- Ames. B. N. & Garry, B. J. (1959) Proc. Nat. Acad. Sci. USA 45, 1453-1461.
- Hartman, P. E., Loper, J. C. & Šerman, D. (1960) J. Gen. Microbiol. 22, 323–353.
- Brenner, M. & Ames, B. N. (1971) in *Metabolic Pathways*, eds. Greenberg, D. M. & Vogel, H. J. (Academic Press, Inc., New York), Vol. 5, pp. 349–387.
- Goldberger, R. F. & Kovach, J. S. (1972) in Current Topics in Cellular Regulation, eds. Horecker, B. L. & Stadtman, E. R. (Academic Press, Inc., New York), Vol. 5, pp. 285–308.
- Kovach, J. S., Berberich, M. A., Venetianer, P. & Goldberger, R. F. (1969) J. Bacteriol. 97, 1283–1290.
- Kovach, J. S., Phang, J. M., Ference, M. & Goldberger, R. F. (1969) Proc. Nat. Acad. Sci. USA 63, 481-488.
- Kovach, J. S., Ballesteros, A. O., Meyers, M., Soria, M. & Goldberger, R. F. (1973) J. Bacteriol. 114, 351–356.
- Blasi, F. R., Barton, R. W., Kovach, J. S. & Goldberger, R. F. (1971) J. Bacteriol. 106, 508-513.

- Vogel, T., Meyers, M., Kovach, J. S. & Goldberger, R. F. (1972) J. Bacteriol. 112, 126–130.
- Blasi, F., Bruni, C. B., Avitable, A., Deeley, R. G., Goldberger, R. F. & Meyers, M. M. (1973) Proc. Nat. Acad. Sci. USA 70, 2692-2696.
- 11. Goldberger, R. F. (1974) Science 183, 810-816.
- 12. Jackson, E. N. & Yanofsky, C. (1972) J. Mol. Biol. 71, 149-161.
- Fink, G. R., Klopotowski, T. & Ames, B. N. (1967) J. Mol. Biol. 30, 81–95.
- Vogel, H. J. & Bonner, D. M. (1956) J. Biol. Chem. 218, 97– 106.
- 15. Roth, J. R. & Hartman, P. E. (1965) Virology 27, 297-307.
- Murray, M. L. & Hartman, P. E. (1972) Can. J. Microbiol. 18, 671-681.
- Hong, J. S. & Ames, B. N. (1971) Proc. Nat. Acad. Sci. USA 68, 3158–3162.
- 18. Schmieger, H. (1971) Mol. Gen. Genet. 110, 378-381.
- 19. Smith, H. O. & Levine, M. (1967) Virology 31, 207-216.
- Martin, R. G., Berberich, M. A., Ames, B. N., Davis, W. W., Goldberger, R. F. & Yourno, J. D. (1971) in *Methods in Enzymology*, eds. Tabor, H. & Tabor, C. W. (Academic Press, Inc., New York), Vol. 17b, pp. 3-44.
- Cieslà, Z., Salvatore, F., Broach, J. R., Artz, S. W. & Ames, B. N. (1975) Anal. Biochem. 63, 44-55.
- 22. Fink, G. R. & Roth, J. R. (1968) J. Mol. Biol. 33, 547-557.
- Hilton, J. L., Kearney, P. C. & Ames, B. N. (1965) Arch. Biochem. Biophys. 112, 544-547.
- Chang, G. W., Roth, J. R. & Ames, B. N. (1971) J. Bacteriol. 108, 410-414.
- Singer, C. E., Smith, G. R., Cortese, R. & Ames, B. N. (1972) Nature New Biol. 238, 72–74.
- Cortese, R., Landsberg, R., Vonder Haar, R. A., Umbarger, H. E. & Ames, B. N. (1974) Proc. Nat. Acad. Sci. USA 71, 1857– 1861.
- 27. Artz, S. W. & Broach, J. R. (1975) Proc. Nat. Acad. Sci. USA 72, 3453–3457.
- Hiraga, S. & Yanofsky, C. (1972) Nature New Biol. 237, 47-49.
- Kline, E., Brown, C., Coleman, Jr., W. & Umbarger, H. E. (1974) Biochem. Biophys. Res. Commun. 57, 1144-1151.